regulated necrosis
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 67)

H-INDEX

23
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Benedikt Kolbrink ◽  
Theresa Riebeling ◽  
Nikolas K. Teiwes ◽  
Claudia Steinem ◽  
Hubert Kalbacher ◽  
...  

Murine cytomegalovirus protein M45 contains a RIP homotypic interaction motif (RHIM) that is sufficient to confer protection of infected cells against necroptotic cell death. Mechanistically, the N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils, and interacts with the endogenous RHIM domains of receptor-interacting protein kinases (RIPK) 1, RIPK3, Z-DNA binding protein 1, and TIR domain-containing adaptor-inducing interferon-β. Remarkably, all four mammalian proteins harbouring such a RHIM domain are key components of inflammatory signalling and regulated cell death processes. Immunogenic cell death by regulated necrosis causes extensive tissue damage in a wide range of diseases, including ischemia reperfusion injury, myocardial infarction, sepsis, stroke and organ transplantation. To harness the cell death suppression properties of M45 protein in a therapeutically usable manner, we developed a synthetic peptide encompassing only the RHIM domain of M45. To trigger delivery of RHIM into target cells, we fused the transactivator protein transduction domain of human immunodeficiency virus 1 to the N-terminus of the peptide. The fused peptide could efficiently penetrate eukaryotic cells, but unexpectedly it killed all tested cancer cell lines and primary cells irrespective of species without further stimulus through a necrosis-like cell death. Typical inhibitors of different forms of regulated cell death cannot impede this process, which appears to involve a direct disruption of biomembranes. Nevertheless, our finding has potential clinical relevance; reliable induction of a necrotic form of cell death distinct from all known forms of regulated cell death may offer a novel therapeutic approach to combat resistant tumour cells.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 127
Author(s):  
Adriana Adameova ◽  
Csaba Horvath ◽  
Safa Abdul-Ghani ◽  
Zoltan V. Varga ◽  
M. Saadeh Suleiman ◽  
...  

Extensive research work has been carried out to define the exact significance and contribution of regulated necrosis-like cell death program, such as necroptosis to cardiac ischemic injury. This cell damaging process plays a critical role in the pathomechanisms of myocardial infarction (MI) and post-infarction heart failure (HF). Accordingly, it has been documented that the modulation of key molecules of the canonical signaling pathway of necroptosis, involving receptor-interacting protein kinases (RIP1 and RIP3) as well as mixed lineage kinase domain-like pseudokinase (MLKL), elicit cardioprotective effects. This is evidenced by the reduction of the MI-induced infarct size, alleviation of myocardial dysfunction, and adverse cardiac remodeling. In addition to this molecular signaling of necroptosis, the non-canonical pathway, involving Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of mitochondrial permeability transition pore (mPTP) opening, and phosphoglycerate mutase 5 (PGAM5)–dynamin-related protein 1 (Drp-1)-induced mitochondrial fission, has recently been linked to ischemic heart injury. Since MI and HF are characterized by an imbalance between reactive oxygen species production and degradation as well as the occurrence of necroptosis in the heart, it is likely that oxidative stress (OS) may be involved in the mechanisms of this cell death program for inducing cardiac damage. In this review, therefore, several observations from different studies are presented to support this paradigm linking cardiac OS, the canonical and non-canonical pathways of necroptosis, and ischemia-induced injury. It is concluded that a multiple therapeutic approach targeting some specific changes in OS and necroptosis may be beneficial in improving the treatment of ischemic heart disease.


Author(s):  
Weihong Wang ◽  
Joshua S. Prokopec ◽  
Yixin Zhang ◽  
Maria Sukhoplyasova ◽  
Himaly Shinglot ◽  
...  

2021 ◽  
pp. ASN.2021040439
Author(s):  
Xiaojia Guo ◽  
Leyuan Xu ◽  
Heino Velazquez ◽  
Tian-Min Chen ◽  
Ryan Williams ◽  
...  

Background Repeated administration of cisplatin causes chronic kidney disease (CKD). In previous studies, we reported that the kidney-secreted survival protein renalase and an agonist peptide protected mice from cisplatin-induced acute kidney injury. Methods To investigate whether kidney-targeted delivery of renalase might prevent cisplatin-induced CKD in a mouse model, we achieved specific delivery of a renalase agonist peptide (RP81) to the renal proximal tubule by encapsulating the peptide in mesoscale nanoparticles (MNPs). We used genetic deletion of renalase, single-cell RNA sequencing (RNA-seq) analysis, and Western blotting to determine efficacy and to explore underlying mechanisms. We also measured plasma renalase in patients with advanced head and neck squamous cell carcinoma receiving their first dose of cisplatin chemotherapy. Results In mice with CKD induced by cisplatin, we observed an approximate 60% reduction of kidney renalase; genetic deletion of renalase was associated with significantly more severe cisplatin-induced CKD. In this severe model of cisplatin-induced CKD, systemic administration of MNP-encapsulated RP81 (RP81-MNP) significantly reduced CKD as assessed by plasma creatinine and histology. It also decreased inflammatory cytokines in plasma and inhibited regulated necrosis in kidney. Single-cell RNA seq analyses revealed that RP81-MNP preserved epithelial components of the nephron and the vasculature, as well as suppressed inflammatory macrophages and myofibroblasts. In patients receiving their first dose of cisplatin chemotherapy, plasma renalase levels trended lower at day 14 post-treatment. Conclusions Kidney-targeted delivery of renalase agonist RP81MNP protects against cisplatin-induced CKD by decreasing cell death and improving the viability of the renal proximal tubule. These findings suggest that such an approach might mitigate the development of CKD in patients receiving cisplatin cancer chemotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiao Liu ◽  
Rui Kang ◽  
Daolin Tang

Pancreatic cancer is a devastating gastrointestinal cancer, characterized by late diagnosis, low treatment success rate, and poor survival prognosis. The most common pathological type of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which is mainly driven by the K-Ras oncogene. Ferroptosis was originally described as Ras-dependent cell death, but is now defined as lipid peroxidation-mediated regulated necrosis, accompanied by excessive activation of the autophagy degradation pathway and limited membrane repair capacity. The impaired ferroptotic pathway is involved in many types of cancer, including PDAC. On the one hand, the chronic inflammation caused by ferroptotic damage contributes to the formation of K-Ras-driven PDAC. On the other hand, drug-induced ferroptosis is an emerging strategy to suppress tumor growth in established PDAC. In this mini-review, we outline the core process of ferroptosis, discuss the regulatory mechanism of ferroptosis in PDAC, and highlight some of the challenges of targeting ferroptosis in PDAC therapy.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 796
Author(s):  
Noyonika Mukherjee ◽  
Li Lin ◽  
Christopher J. Contreras ◽  
Andrew T. Templin

β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.


2021 ◽  
Vol 22 (22) ◽  
pp. 12259
Author(s):  
Alireza Valanezhad ◽  
Tetsurou Odatsu ◽  
Shigeaki Abe ◽  
Ikuya Watanabe

Recently, ferroptosis has gained scientists’ attention as an iron-related regulated necrosis. However, not many reports have investigated the effect of ferroptosis on bone. Therefore, with the present study, we assessed the effect of ferroptosis inhibition using ferrostatin-1 on the MC3T3-E1 pre-osteoblast cell. Cell images, cell viability, alkaline phosphatase activity test, alizarin red staining, and RUNX2 gene expression using real-time PCR were applied to investigate the effects of ferrostatin and erastin on MC3T3-E1 osteoblast cells. Erastin was used as a well-known ferroptosis inducer reagent. Erastin with different concentrations ranging from 0 to 50 µmol/L was used for inducing cell death. The 25 µmol/L erastin led to controllable partial cell death on osteoblast cells. Ferrostatin-1 with 0 to 40 µmol/L was used for cell doping and cell death inhibition effect. Ferrostatin-1 also displayed a recovery effect on the samples, which had already received the partially artificial cell death by erastin. Cell differentiation, alizarin red staining, and RUNX2 gene expression confirmed the promotion of the bone formation ability effect of ferrostatin-1 on osteoblast cells. The objective of this study was to assess ferrostatin-1’s effect on the MC3T3-E1 osteoblast cell line based on its ferroptosis inhibitory property.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Youwei Lu ◽  
Xi Zhang ◽  
Wei Hu ◽  
Qianhong Yang

Background. Atherosclerosis (AS) is a type of yellow substance containing cholesterol in the intima of large and middle arteries, which is mostly caused by fat metabolism disorders and neurovascular dysfunction. Materials and Methods. The GSE100927 data got analyzed to find out the differentially expressed genes (DEGs) using the limma package in R software. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the DEGs were assessed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The Search Tool for the Retrieval of Interacting Genes (STRING) visualized the Protein-Protein Interaction (PPI) network of the aggregated DEGs. GSEA software was used to verify the biological process. Result. We screened 1574 DEGs from 69 groups of atherosclerotic carotid artery and 35 groups of control carotid artery, including 1033 upregulated DEGs and 541 downregulated DEGs. DEGs of AS were chiefly related to immune response, Epstein-Barr virus infection, vascular smooth muscle contraction, and cGMP-PKG signaling pathway. Through PPI networks, we found that the hub genes of AS were PTAFR, VAMP8, RNF19A, VPRBP, RNF217, KLHL42, NEDD4, SH3RF1, UBE2N, PJA2, RNF115, ITCH, SKP1, FBXW4, and UBE2H. GSEA analysis showed that GSE100927 was concentrated in RIPK1-mediated regulated necrosis, FC epsilon receptor fceri signaling, Fceri-mediated NF KB activation, TBC rabgaps, TRAF6-mediated induction of TAK1 complex within TLR4 complex, and RAB regulation of trafficking. Conclusion. Our analysis reveals that immune response, Epstein-Barr virus infection, and so on were major signatures of AS. PTAFR, VAMP8, VPRBP, RNF217, KLHL42, and NEDD4 might facilitate the AS tumorigenesis, which could be new biomarkers for diagnosis and therapy of AS.


Author(s):  
Meiyan Zhong ◽  
Yuanting Huang ◽  
Bo Zeng ◽  
Lihui Xu ◽  
Chunsu Zhong ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sebastian J. Theobald ◽  
Jessica Gräb ◽  
Melanie Fritsch ◽  
Isabelle Suárez ◽  
Hannah S. Eisfeld ◽  
...  

AbstractNecrotic cell death represents a major pathogenic mechanism of Mycobacterium tuberculosis (Mtb) infection. It is increasingly evident that Mtb induces several types of regulated necrosis but how these are interconnected and linked to the release of pro-inflammatory cytokines remains unknown. Exploiting a clinical cohort of tuberculosis patients, we show here that the number and size of necrotic lesions correlates with IL-1β plasma levels as a strong indicator of inflammasome activation. Our mechanistic studies reveal that Mtb triggers mitochondrial permeability transition (mPT) and subsequently extensive macrophage necrosis, which requires activation of the NLRP3 inflammasome. NLRP3-driven mitochondrial damage is dependent on proteolytic activation of the pore-forming effector protein gasdermin D (GSDMD), which links two distinct cell death machineries. Intriguingly, GSDMD, but not the membranolytic mycobacterial ESX-1 secretion system, is dispensable for IL-1β secretion from Mtb-infected macrophages. Thus, our study dissects a novel mechanism of pathogen-induced regulated necrosis by identifying mitochondria as central regulatory hubs capable of delineating cytokine secretion and lytic cell death.


Sign in / Sign up

Export Citation Format

Share Document