cell fate decisions
Recently Published Documents


TOTAL DOCUMENTS

1156
(FIVE YEARS 437)

H-INDEX

84
(FIVE YEARS 14)

2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Jasmina Al-Mousawi ◽  
Ana Boskovic

Author(s):  
Dmitri Serjanov ◽  
Galina Bachay ◽  
Dale D. Hunter ◽  
William J. Brunken

Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin β2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin β2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.


2022 ◽  
Author(s):  
Kimberly N. Bekas ◽  
Bryan T. Phillips

Asymmetric cell division (ACD) is a fundamental mechanism of developmental cell fate specification and adult tissue homeostasis. In C. elegans, the Wnt/beta-catenin asymmetry (WβA) pathway regulates ACDs throughout embryonic and larval development. Under control of Wnt ligand-induced polarity, the transcription factor TCF/POP-1 functions with the coactivator beta-catenin/SYS-1 to activate gene expression in the signaled cell or, in absence of the coactivator, to repress Wnt target genes in the nascent unsignaled daughter cell. To date, a broad investigation of Groucho function in WβA is lacking and the function of the short Groucho AES homolog, lsy-22 has only been evaluated in C. elegans neuronal cell fate decisions. Further, there is conflicting evidence showing TCF utilizing Groucho-mediated repression may be either aided or repressed by addition of AES subfamily of Groucho proteins. Here we demonstrate a genetic interaction between Groucho repressors and TCF/POP-1 in ACDs in the somatic gonad, the seam hypodermal stem cell lineage and the early embryo. Specifically, in the somatic gonad lineage, the signaled cell fate increases after individual and double Groucho loss of function, representing the first demonstration of Groucho function in wild-type WβA ACD. Further, WβA target gene misexpression occurs at a higher rate than DTC fate changes, suggesting derepression generates an intermediate cell fate. In seam cell ACD, loss of Groucho unc-37 or Groucho-like lsy-22 in a pop-1(RNAi) hypomorphic background enhances a pop-1 seam cell expansion and target gene misregulation. Moreover, while POP-1 depletion in lsy-22 null mutants yielded an expected increase in seam cells we observed a surprising seam cell decrease in the unc-37 null subjected to POP-1 depletion. This phenotype may be due to UNC-37 regulation of pop-1 expression in this tissue since we find misregulation of POP-1 in unc-37 mutants. Lastly, Groucho functions in embryonic endoderm development since we observe ectopic endoderm target gene expression in lsy-22(ot244) heterozygotes and unc-37(tm4649) heterozygotes subjected to intermediate levels of hda-1(RNAi). Together, these data indicate Groucho repressor modulation of cell fate via regulation of POP-1/TCF repression is widespread in asymmetric cell fate decisions and suggests a novel role of LSY-22 as a bona fide TCF repressor. As AES Grouchos are well-conserved, our model of combinatorial TCF repression by both Gro/TLE and AES warrants further investigation. 


mBio ◽  
2022 ◽  
Author(s):  
Zhuo Chen ◽  
Priyanka Srivastava ◽  
Brenda Zarazúa-Osorio ◽  
Anuradha Marathe ◽  
Masaya Fujita ◽  
...  

In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli.


Blood ◽  
2022 ◽  
Author(s):  
Celine Overbeeke ◽  
Tamar Tak ◽  
Leendert Koenderman

Neutrophils are the most abundant white blood cell, and differentiate in homeostasis in the bone marrow from hematopoietic stem cells (HSCs) via multiple intermediate progenitor cells into mature cells that enter the circulation. Recent findings support a continuous model of differentiation in the bone marrow of heterogeneous HSCs and progenitor populations. Cell fate decisions both at the level of proliferation and differentiation are enforced through expression of lineage-determining transcription factors (LDTFs) and their interactions, that are influenced by both intrinsic (intracellular) as well as extrinsic (extracellular) mechanisms. Neutrophil homeostasis is subjected to positive feedback loops, stemming from the gut microbiome, as well as negative feedback loops resulting from the clearance of apoptotic neutrophils by mature macrophages. Finally, the cellular kinetics regarding the replenishing of the mature neutrophil pool is discussed in light of recent, contradictory data.


2021 ◽  
Author(s):  
Ritika Giri ◽  
Shannon C Brady ◽  
Richard William Carthew

Cell fate decisions can be envisioned as bifurcating dynamical systems, and the decision that Drosophila cells make to undergo sensory organ differentiation has been sucessfully described as such. We have extended these studies by focusing on the Senseless protein, which orchestrates the sensory fate transition. Wing cells contain intermediate Senseless numbers prior to their fate transition, after which they express much greater numbers of Senseless molecules as they differentiate. However, the dynamics are not consistent with it being a simple bistable system. Cells with intermediate Senseless are best modeled as residing in four discrete states, each with a distinct protein number and occupying a specific region of the tissue. Although the four states are stable over time, the number of molecules in each state vary with time. Remarkably, the fold-change in molecule number between adjacent states is invariant and robust to absolute protein number variation. Thus, cells transitioning to sensory fates exhibit metastability with relativistic properties.


Autophagy ◽  
2021 ◽  
pp. 1-17
Author(s):  
Kulbhushan Sharma ◽  
Nagham T. Asp ◽  
Sean P. Harrison ◽  
Richard Siller ◽  
Saphira F. Baumgarten ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13531
Author(s):  
Jonathan H. P. Dawes ◽  
Robert N. Kelsh

The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.


Development ◽  
2021 ◽  
Vol 148 (24) ◽  

Cell fate decisions are dependent on both internal and external factors, but mathematical models of this process have often neglected the external signals. A new paper in Development describes a multiscale model that integrates intracellular gene regulatory networks with a cell-cell communication network at single-cell resolution. We caught up with the authors, PhD student Megan Rommelfanger and Adam MacLean, Assistant Professor at the University of Southern California, to find out more about their research.


Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Megan K. Rommelfanger ◽  
Adam L. MacLean

ABSTRACT Cells do not make fate decisions independently. Arguably, every cell-fate decision occurs in response to environmental signals. In many cases, cell-cell communication alters the dynamics of the internal gene regulatory network of a cell to initiate cell-fate transitions, yet models rarely take this into account. Here, we have developed a multiscale perspective to study the granulocyte-monocyte versus megakaryocyte-erythrocyte fate decisions. This transition is dictated by the GATA1-PU.1 network: a classical example of a bistable cell-fate system. We show that, for a wide range of cell communication topologies, even subtle changes in signaling can have pronounced effects on cell-fate decisions. We go on to show how cell-cell coupling through signaling can spontaneously break the symmetry of a homogenous cell population. Noise, both intrinsic and extrinsic, shapes the decision landscape profoundly, and affects the transcriptional dynamics underlying this important hematopoietic cell-fate decision-making system. This article has an associated ‘The people behind the papers’ interview.


Sign in / Sign up

Export Citation Format

Share Document