temporal cortex
Recently Published Documents


TOTAL DOCUMENTS

2163
(FIVE YEARS 568)

H-INDEX

136
(FIVE YEARS 11)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jing Ren ◽  
Qun Yao ◽  
Minjie Tian ◽  
Feng Li ◽  
Yueqiu Chen ◽  
...  

Abstract Background Migraine is a common and disabling primary headache, which is associated with a wide range of psychiatric comorbidities. However, the mechanisms of emotion processing in migraine are not fully understood yet. The present study aimed to investigate the neural network during neutral, positive, and negative emotional stimuli in the migraine patients. Methods A total of 24 migraine patients and 24 age- and sex-matching healthy controls were enrolled in this study. Neuromagnetic brain activity was recorded using a whole-head magnetoencephalography (MEG) system upon exposure to human facial expression stimuli. MEG data were analyzed in multi-frequency ranges from 1 to 100 Hz. Results The migraine patients exhibited a significant enhancement in the effective connectivity from the prefrontal lobe to the temporal cortex during the negative emotional stimuli in the gamma frequency (30–90 Hz). Graph theory analysis revealed that the migraine patients had an increased degree and clustering coefficient of connectivity in the delta frequency range (1–4 Hz) upon exposure to positive emotional stimuli and an increased degree of connectivity in the delta frequency range (1–4 Hz) upon exposure to negative emotional stimuli. Clinical correlation analysis showed that the history, attack frequency, duration, and neuropsychological scales of the migraine patients had a negative correlation with the network parameters in certain frequency ranges. Conclusions The results suggested that the individuals with migraine showed deviant effective connectivity in viewing the human facial expressions in multi-frequencies. The prefrontal-temporal pathway might be related to the altered negative emotional modulation in migraine. These findings suggested that migraine might be characterized by more universal altered cerebral processing of negative stimuli. Since the significant result in this study was frequency-specific, more independent replicative studies are needed to confirm these results, and to elucidate the neurocircuitry underlying the association between migraine and emotional conditions.


2022 ◽  
Author(s):  
Corentin Jacques ◽  
Jacques Jonas ◽  
Sophie Colnat-Coulbois ◽  
Louis Maillard ◽  
Bruno Rossion

In vivo intracranial recordings of neural activity offer a unique opportunity to understand human brain function. Intracranial electrophysiological (iEEG) activity related to sensory, cognitive or motor events manifests mostly in two types of signals: event-related local field potentials in lower frequency bands (<30 Hz, LF) and broadband activity in the higher end of the frequency spectrum (>30 Hz, High frequency, HF). While most current studies rely exclusively on HF, thought to be more focal and closely related to spiking activity, the relationship between HF and LF signals is unclear, especially in human associative cortex. Here we provide a large-scale in-depth investigation of the spatial and functional relationship between these 2 signals based on intracranial recordings from 121 individual brains (8000 recording sites). We measure selective responses to complex ecologically salient visual stimuli – human faces - across a wide cortical territory in the ventral occipito-temporal cortex (VOTC), with a frequency-tagging method providing high signal-to-noise ratio (SNR) and the same objective quantification of signal and noise for the two frequency ranges. While LF face-selective activity has higher SNR across the VOTC, leading to a larger number of significant electrode contacts especially in the anterior temporal lobe, LF and HF display highly similar spatial, functional, and timing properties. Specifically, and contrary to a widespread assumption, our results point to nearly identical spatial distribution and local spatial extent of LF and HF activity at equal SNR. These observations go a long way towards clarifying the relationship between the two main iEEG signals and reestablish the informative value of LF iEEG to understand human brain function.


Neurology ◽  
2022 ◽  
Vol 98 (2) ◽  
pp. e107-e114
Author(s):  
Sadhvi Saxena ◽  
Zafer Keser ◽  
Chris Rorden ◽  
Leonardo Bonilha ◽  
Julius Fridriksson ◽  
...  

Background and ObjectivesHemispatial neglect is a heterogeneous and complex disorder that can be classified by frame of reference for “left” vs “right,” including viewer-centered neglect (VCN, affecting the contralesional side of the view), stimulus-centered neglect (SCN, affecting the contralesional side of the stimulus, irrespective of its location with respect to the viewer), or both. We investigated the effect of acute stroke lesions on the connectivity of neural networks that underlie VCN or SCN.MethodsA total of 174 patients within 48 hours of acute right hemispheric infarct underwent a detailed hemispatial neglect assessment that included oral reading, scene copy, line cancellation, gap detection, horizontal line bisection tests, and MRI. Each patient's connectivity map was generated. We performed a linear association analysis between network connectivity strength and continuous measures of neglect to identify lesion-induced disconnections associated with the presence or severity of VCN and SCN. Results were corrected for multiple comparisons.ResultsAbout 42% of the participants with right hemisphere stroke had at least one type of neglect. The presence of any type of neglect was associated with lesions to tracts connecting the right inferior parietal cortex, orbitofrontal cortex, and right thalamus to other right-hemispheric structures. VCN only was strongly associated with tracts connecting the right putamen to other brain regions and tracts connecting right frontal regions with other brain regions. The presence of both types of neglect was most strongly associated with tracts connecting the right inferior and superior parietal cortex to other brain regions and those connecting left or right mesial temporal cortex to other brain regions.DiscussionOur study provides new evidence for the specific white matter tracts where disruption can cause hemispatial neglect in a relatively large number of participants and homogeneous time after onset. We obtained MRI and behavioral testing acutely, before the opportunity for rehabilitation or substantial recovery.Classification of EvidenceThis study provides Class II evidence that damage to specific white matter tracts identified on MRI are associated with the presence of neglect following right hemispheric stroke.


2022 ◽  
Author(s):  
Hung-Yu Liu ◽  
Pei-Lin Lee ◽  
Kun-Hsien Chou ◽  
Yen-Feng Wang ◽  
Shih-Pin Chen ◽  
...  

Abstract Many patients with fibromyalgia (FM) experience fatigue, but the associated biological mechanisms have not been delineated. We aimed to investigate the neural signatures associated with fatigue severity in patients with FM using MRI. We consecutively recruited 138 patients with FM and collected their clinical profiles and brain-MRI data. We categorized the patients into 3 groups based on their fatigue severity. Using voxel-based morphometry analysis and trend analysis, we first identified neural structures showing volumetric changes associated with fatigue severity, and further explored their seed-to-voxel structural covariance networks (SCNs). Results showed decreased bilateral thalamic volumes were associated with higher severity of fatigue. There was a more widespread distribution of the thalamic SCNs to the frontal, parietal, subcortical, and limbic regions in patients with higher fatigue severity. In addition, increased right inferior temporal cortex volumes were associated with higher severity of fatigue. The right inferior temporal seed showed more SCNs distributions over the temporal cortex and a higher strength of SCNs to the bilateral occipital cortex in patients with higher fatigue severity. The thalamus and the right inferior temporal cortex as well as their altered interactions with cortical and subcortical regions comprise the neural signatures of fatigue in FM.


2022 ◽  
Author(s):  
Jeongho Park ◽  
Emilie Josephs ◽  
Talia Konkle

We can easily perceive the spatial scale depicted in a picture, regardless of whether it is a small space (e.g., a close-up view of a chair) or a much larger space (e.g., an entire class room). How does the human visual system encode this continuous dimension? Here, we investigated the underlying neural coding of depicted spatial scale, by examining the voxel tuning and topographic organization of brain responses. We created naturalistic yet carefully-controlled stimuli by constructing virtual indoor environments, and rendered a series of snapshots to smoothly sample between a close-up view of the central object and far-scale view of the full environment (object-to-scene continuum). Human brain responses were measured to each position using functional magnetic resonance imaging. We did not find evidence for a smooth topographic mapping for the object-to-scene continuum on the cortex. Instead, we observed large swaths of cortex with opposing ramp-shaped profiles, with highest responses to one end of the object-to-scene continuum or the other, and a small region showing a weak tuning to intermediate scale views. Importantly, when we considered the multi-voxel patterns of the entire ventral occipito-temporal cortex, we found smooth and linear representation of the object-to-scene continuum. Thus, our results together suggest that depicted spatial scale is coded parametrically in large-scale population codes across the entire ventral occipito-temporal cortex.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Haitao Tu ◽  
Zhi Wei Zhang ◽  
Lifeng Qiu ◽  
Yuning Lin ◽  
Mei Jiang ◽  
...  

Abstract Background Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are common age-related neurodegenerative diseases comprising Lewy body spectrum disorders associated with cortical and subcortical Lewy body pathology. Over 30% of PD patients develop PD dementia (PDD), which describes dementia arising in the context of established idiopathic PD. Furthermore, Lewy bodies frequently accompany the amyloid plaque and neurofibrillary tangle pathology of Alzheimer’s disease (AD), where they are observed in the amygdala of approximately 60% of sporadic and familial AD. While PDD and DLB share similar pathological substrates, they differ in the temporal onset of motor and cognitive symptoms; however, protein markers to distinguish them are still lacking. Methods Here, we systematically studied a series of AD and PD pathogenesis markers, as well as mitochondria, mitophagy, and neuroinflammation-related indicators, in the substantia nigra (SN), temporal cortex (TC), and caudate and putamen (CP) regions of human post-mortem brain samples from individuals with PDD and DLB and condition-matched controls. Results We found that p-APPT668 (TC), α-synuclein (CP), and LC3II (CP) are all increased while the tyrosine hydroxylase (TH) (CP) is decreased in both PDD and DLB compared to control. Also, the levels of Aβ42 and DD2R, IBA1, and p-LRRK2S935 are all elevated in PDD compared to control. Interestingly, protein levels of p-TauS199/202 in CP and DD2R, DRP1, and VPS35 in TC are all increased in PDD compared to DLB. Conclusions Together, our comprehensive and systematic study identified a set of signature proteins that will help to understand the pathology and etiology of PDD and DLB at the molecular level.


NeuroImage ◽  
2022 ◽  
pp. 118900
Author(s):  
Arielle S. Keller ◽  
Akshay Jagadeesh ◽  
Lior Bugatus ◽  
Leanne M. Williams ◽  
Kalanit Grill-Spector

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jiedong Zhang ◽  
Yong Jiang ◽  
Yunjie Song ◽  
Peng Zhang ◽  
Sheng He

Regions sensitive to specific object categories as well as organized spatial patterns sensitive to different features have been found across the whole ventral temporal cortex (VTC). However, it is unclear that within each object category region, how specific feature representations are organized to support object identification. Would object features, such as object parts, be represented in fine-scale spatial tuning within object category-specific regions? Here, we used high-field 7T fMRI to examine the spatial tuning to different face parts within each face-selective region. Our results show consistent spatial tuning of face parts across individuals that within right posterior fusiform face area (pFFA) and right occipital face area (OFA), the posterior portion of each region was biased to eyes, while the anterior portion was biased to mouth and chin stimuli. Our results demonstrate that within the occipital and fusiform face processing regions, there exist systematic spatial tuning to different face parts that support further computation combining them.


2021 ◽  
Author(s):  
Ozkan Is ◽  
Xue Wang ◽  
Tulsi A. Patel ◽  
Zachary S. Quicksall ◽  
Michael G. Heckman ◽  
...  

Blood-brain barrier (BBB) dysfunction is well-known in Alzheimer's disease (AD), but the precise molecular changes contributing to its pathophysiology are unclear. To understand the transcriptional changes in brain vascular cells, we performed single nucleus RNA sequencing (snRNAseq) of temporal cortex tissue in 24 AD and control brains resulting in 79,751 nuclei, 4,604 of which formed three distinct vascular clusters characterized as activated pericytes, endothelia and resting pericytes. We identified differentially expressed genes (DEGs) and their enriched pathways in these clusters and detected the most transcriptional changes within activated pericytes. Using our data and a knowledge-based predictive algorithm, we discovered and prioritized molecular interactions between vascular and astrocyte clusters, the main cell types of the gliovascular unit (GVU) of the BBB. Vascular targets predicted to interact with astrocytic ligands have biological functions in signaling, angiogenesis, amyloid β metabolism and cytoskeletal structure. Top astrocytic and vascular interacting molecules include both novel and known AD risk genes such as APOE, APP and ECE1. Our findings provide information on transcriptional changes in predicted vascular-astrocytic partners at the GVU, bringing insights to the molecular mechanisms of BBB breakdown in AD.


2021 ◽  
Author(s):  
Sara Bertagnoli ◽  
Valentina Pacella ◽  
Elena Rossato ◽  
Paul M Jenkinson ◽  
Akaterini Fotopoulou ◽  
...  

Abstract Personal neglect is a disorder in the perception and representation of the body that causes the patients to behave as if the contralesional side of their body does not exist. This clinical condition has not been adequately investigated in the past as it has been considered a symptom of unilateral spatial neglect, which has mainly been studied with reference to extrapersonal space. Only a few studies with small samples have investigated the neuroanatomical correlates of personal neglect, and these have mainly focused on discrete cortical lesions and modular accounts, as well as being based on the hypothesis that this disorder is associated with somatosensory and spatial deficits. In the present study, we tested the novel hypothesis that personal neglect may be associated not only with discrete cortical and subcortical lesions, but also with disconnections of white matter tracts. We performed an advanced lesion analyses in a large sample of 104 right hemisphere damaged patients, 68 of whom were suffering from personal neglect. Results from the analyses of the grey and white matter were controlled for co-occurrent clinical variables such as extrapersonal neglect, anosognosia for hemiplegia and motor deficits, along with other lesion-related variables such as lesion size, the interval from the lesion onset to neuroimaging recordings. Our results reveal that personal neglect is associated with lesions in a medial network which involves the temporal cortex (Heschl’s gyrus), the ventro-lateral nuclei of the thalamus, and the fornix. This suggests that personal neglect involves a convergence between sensorimotor processes, spatial representation and the processing of self-referred information (episodic memory).


Sign in / Sign up

Export Citation Format

Share Document