sediment input
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 36)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 579 ◽  
pp. 117340
Author(s):  
Simin Jin ◽  
David B. Kemp ◽  
David W. Jolley ◽  
Manuel Vieira ◽  
James C. Zachos ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3649
Author(s):  
Katharina Allion ◽  
Michael Gebel ◽  
Mario Uhlig ◽  
Stefan Halbfass ◽  
Stephan Bürger ◽  
...  

For particle-bound substances such as phosphorus, erosion is an important input pathway to surface waters. Therefore, knowledge of soil erosion by water and sediment inputs to water bodies at high spatial resolution is essential to derive mitigation measures at the regional scale. Models are used to calculate soil erosion and associated sediment inputs to estimate the resulting loads. However, validation of these models is often not sufficiently possible. In this study, sediment input was modeled on a 10 × 10 m grid for a subcatchment of the Kraichbach river in Baden-Wuerttemberg (Germany). In parallel, large-volume samplers (LVS) were operated at the catchment outlet, which allowed a plausibility check of the modeled sediment inputs. The LVS produced long-term composite samples (2 to 4 weeks) over a period of 4 years. The comparison shows a very good agreement between the modeled and measured sediment loads. In addition, the monitoring concept of the LVS offers the possibility to identify the sources of the sediment inputs to the water body. In the case of the Kraichbach river, it was found that around 67% of the annual sediment load in the water body is contributed by rainfall events and up to 33% represents dry-weather load. This study shows that the modeling approaches for calculating the sediment input provide good results for the test area Kraichbach and the transfer for a German wide modeling will produce plausible values.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3074
Author(s):  
Silvia Bosa ◽  
Marco Petti ◽  
Sara Pascolo

Port silting is a common and natural process which often causes serious inconveniences for safe navigation and requires expensive dredging operations to keep the port operative. Sediment deposition is closely related to the exchange water between the basin and the surrounding environment; one way to limit deposits is by reducing the flow entering the port. However, this may be in contrast with the need for adequate sediment quality, which in turn is closely related to an appropriate water current. This seems to be particularly important in lagoon environments, where sediments are often polluted, making its disposal more complicated and costly. The present paper investigates the situation of the port of Marano Lagunare (Italy) by means of a bidimensional morphological-hydrodynamic and spectral coupled model. To reduce the sediment input into the port, the closure of a secondary port entrance is usually suggested. However, this work demonstrates that a complete dredging of the secondary port inlet allows for an increase in water circulation or efficiency renewal, which ensures a better oxygenation at the bottom of the canals.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marcella Roner ◽  
Massimiliano Ghinassi ◽  
Alvise Finotello ◽  
Adele Bertini ◽  
Nathalie Combourieu-Nebout ◽  
...  

Many salt-marsh systems worldwide are currently threatened by drowning and lateral erosion that are not counteracted by sufficient sediment supply. Here we analyze the response of a salt-marsh system to changes in sediment availability and show that, contrary to what would have been expected, marsh dynamics in the vertical plane can be insensitive to large sediment supply. We integrate sedimentological, geochronological, paleoecological, geophysical, and chemical analyses of salt-marsh sediments accumulated over the past six centuries in the Southern Venice Lagoon (Italy), and suggest that a time lag exists between enhanced river-fed clastic sediment input and its signature in the salt-marsh succession. This time lag is likely caused by the stocking of the sediment along the margins of pre-existing marshes, which started to significantly expand horizontally – rather than accrete vertically – when sediment input increased. When sediment input drastically decreased, wind waves re-suspended the river-fed deposits and distributed them over the marsh platform, eventually allowing for vertical accretion. Understanding the response of salt-marsh systems to changes in sediment supply has important implications for the management of tidal landscapes and the prediction of their evolution under the effects of natural and anthropogenic forcings. Our results highlight that the study of ultra-recent sedimentary successions needs to be carried out on the basis of a deep understanding of specific depositional dynamics.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2802
Author(s):  
Xiaofan Wang ◽  
Xudong Ma ◽  
Xingnian Liu

In this study, the impacts of massive sediment input on channel geometry adjustment were analyzed across decades based on the downstream hydraulic geometry. Massive amounts of field data and evolution models showed that the alternation of degradation and aggradation in short-to-medium-term channel adjustment is common in evolving rivers. This phenomenon has always been challenging in research; most existing studies have focused on unidirectional adjustment in short-term channel adjustment. A few studies have considered the alternation of degradation and aggradation in short-to-medium-term channel adjustment, presuming that this phenomenon is caused by water and sediment changes. However, we found that the alternations also occurred under stable water and sediment transport in the North Fork Toutle River, southwestern Washington, USA. This adjustment across decades was analyzed by downstream hydraulic geometry in this study. It was concluded that the river consumes surplus energy to reach the optimal cross section through this short-to-medium-term adjustment under stable water and sediment transport. The objective of channel adjustment is minimal energy loss.


Author(s):  
H. Tilley ◽  
G.F. Moore ◽  
M.B. Underwood ◽  
F.J. Hernández‐Molina ◽  
M. Yamashita ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 251
Author(s):  
Adi Zweifler (Zvifler) ◽  
Michael O’Leary ◽  
Kyle Morgan ◽  
Nicola K. Browne

Increasing evidence suggests that coral reefs exposed to elevated turbidity may be more resilient to climate change impacts and serve as an important conservation hotspot. However, logistical difficulties in studying turbid environments have led to poor representation of these reef types within the scientific literature, with studies using different methods and definitions to characterize turbid reefs. Here we review the geological origins and growth histories of turbid reefs from the Holocene (past), their current ecological and environmental states (present), and their potential responses and resilience to increasing local and global pressures (future). We classify turbid reefs using new descriptors based on their turbidity regime (persistent, fluctuating, transitional) and sources of sediment input (natural versus anthropogenic). Further, by comparing the composition, function and resilience of two of the most studied turbid reefs, Paluma Shoals Reef Complex, Australia (natural turbidity) and Singapore reefs (anthropogenic turbidity), we found them to be two distinct types of turbid reefs with different conservation status. As the geographic range of turbid reefs is expected to increase due to local and global stressors, improving our understanding of their responses to environmental change will be central to global coral reef conservation efforts.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sulung Nomosatryo ◽  
Rik Tjallingii ◽  
Anja Maria Schleicher ◽  
Paulus Boli ◽  
Cynthia Henny ◽  
...  

Physical and (bio)chemical processes in the catchment as well as internal lake processes influence the composition of lacustrine sediments. Lake internal processes are a consequence of reactions and fluxes between sediment, porewater and the water column. Due to its separation into four interconnected sub-basins, Lake Sentani, Papua Province, Indonesia, is a unique tropical lake that reveals a wide range of geochemical conditions. The highly diverse geological catchment causes mineralogical and chemical differentiation of the sediment input into each sub-basin. Also, strong morphological differences between the sub-basins result in a unique water column structure for each sub-basin, ranging from fully mixed to meromictic. Given the strong differences in sediment composition and bottom water chemistry among the four sub-basins, Lake Sentani offers a unique chance to study multiple lacustrine systems under identical climate conditions and with a common surface water chemistry. We used sediment cores and water samples and measured physicochemical water column profiles to reveal the geochemical characteristics of the water column, the sediment and pore water for all four sub-basins of Lake Sentani. The chemical composition of the sediment reveals differentiation among the sub-basins according to their sediment input and water column structure. Catchment lithology mainly affects overall sediment composition, whereas pore water chemistry is also affected by water column structure, which is related to basin morphology and water depth. In the meromictic sub-basins the bottom water and sediment pore water appear to form a single continuous system, whereas in those sub-basins with oxygenated bottom water the sediment-water interface forms a pronounced chemical barrier.


Sign in / Sign up

Export Citation Format

Share Document