multiplicative white noise
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 70 (4) ◽  
pp. 1267-1282
Author(s):  
Elisabetta Chiodaroli ◽  
Eduard Feireisl ◽  
Franco Flandoli

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guifen Liu ◽  
Wenqiang Zhao

<p style='text-indent:20px;'>In this paper, we investigate a non-autonomous stochastic quasi-linear parabolic equation driven by multiplicative white noise by a Wong-Zakai approximation technique. The convergence of the solutions of quasi-linear parabolic equations driven by a family of processes with stationary increment to that of stochastic differential equation with white noise is obtained in the topology of <inline-formula><tex-math id="M2">\begin{document}$ L^2( {\mathbb{R}}^N) $\end{document}</tex-math></inline-formula> space. We establish the Wong-Zakai approximations of solutions in <inline-formula><tex-math id="M3">\begin{document}$ L^l( {\mathbb{R}}^N) $\end{document}</tex-math></inline-formula> for arbitrary <inline-formula><tex-math id="M4">\begin{document}$ l\geq q $\end{document}</tex-math></inline-formula> in the sense of upper semi-continuity of their random attractors, where <inline-formula><tex-math id="M5">\begin{document}$ q $\end{document}</tex-math></inline-formula> is the growth exponent of the nonlinearity. The <inline-formula><tex-math id="M6">\begin{document}$ L^l $\end{document}</tex-math></inline-formula>-pre-compactness of attractors is proved by using the truncation estimate in <inline-formula><tex-math id="M7">\begin{document}$ L^q $\end{document}</tex-math></inline-formula> and the higher-order bound of solutions.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kush Kinra ◽  
Manil T. Mohan

<p style='text-indent:20px;'>This work deals with the asymptotic behavior of the two as well as three dimensional convective Brinkman-Forchheimer (CBF) equations in an <inline-formula><tex-math id="M1">\begin{document}$ n $\end{document}</tex-math></inline-formula>-dimensional torus (<inline-formula><tex-math id="M2">\begin{document}$ n = 2, 3 $\end{document}</tex-math></inline-formula>):</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \frac{\partial\boldsymbol{u}}{\partial t}-\mu \Delta\boldsymbol{u}+(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}+\alpha\boldsymbol{u}+\beta|\boldsymbol{u}|^{r-1}\boldsymbol{u}+\nabla p = \boldsymbol{f}, \ \nabla\cdot\boldsymbol{u} = 0, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M3">\begin{document}$ r\geq1 $\end{document}</tex-math></inline-formula>. We prove that the global attractor of the above system is singleton under small forcing intensity (<inline-formula><tex-math id="M4">\begin{document}$ r\geq 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M5">\begin{document}$ n = 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ r\geq 3 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M7">\begin{document}$ n = 3 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M8">\begin{document}$ 2\beta\mu\geq 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M9">\begin{document}$ r = n = 3 $\end{document}</tex-math></inline-formula>). But if one perturbs the above system with an additive or multiplicative white noise, there is no sufficient evidence that the random attractor keeps the singleton structure. We obtain that the random attractor for 2D stochastic CBF equations forced by additive and multiplicative white noise converges towards the deterministic singleton attractor for all <inline-formula><tex-math id="M10">\begin{document}$ 1\leq r&lt;\infty $\end{document}</tex-math></inline-formula>, when the coefficient of random perturbation converges to zero (upper and lower semicontinuity). For the case of 3D stochastic CBF equations perturbed by additive and multiplicative white noise, we are able to establish that the random attractor converges towards the deterministic singleton attractor for <inline-formula><tex-math id="M11">\begin{document}$ 3\leq r&lt;\infty $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M12">\begin{document}$ 2\beta\mu\geq 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M13">\begin{document}$ r = 3 $\end{document}</tex-math></inline-formula>), when the coefficient of random perturbation converges to zero.</p>


2020 ◽  
pp. 2150033
Author(s):  
Fahe Miao ◽  
Hui Liu ◽  
Jie Xin

The Wong–Zakai approximations given by a stationary process and attractors for stochastic degenerate parabolic equations are considered in this paper. We first establish the existence and uniqueness of tempered pullback attractors for the Wong–Zakai approximations of stochastic degenerate parabolic equations. We then prove that the attractors of Wong–Zakai approximations converge to the attractor of stochastic degenerate parabolic equations driven by multiplicative white noise.


2020 ◽  
Vol 19 ◽  

This paper focuses on the study of the existence of a mild solution to time and space-fractional stochastic equation perturbed by multiplicative white noise. The required results are obtained by means of Sadovskii’s fixed point theorem.


Sign in / Sign up

Export Citation Format

Share Document