passive immunization
Recently Published Documents


TOTAL DOCUMENTS

1164
(FIVE YEARS 223)

H-INDEX

69
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Heinz-Josef Schmitt ◽  
Khrystyna Hrynkevych

The respiratory syncytial virus (RSV) is an RNA virus that causes annual ARI outbreaks during winter with mild URTI in the general population, but with severe LRTI particularly among young children (bronchiolitis), patients with underlying diseases and people >65 years of age. RSV does not induce a long-lasting protective immunity and repeated infections throughout life are the norm. Basically, all children have been infected by 2 years of age and of those hospitalized, >50% are <3 months and 75% are <6 months of age. The overall CFR is 1/500. For adults ≥65 years, RSV hospitalization rates are 90–250/105. There is no specific therapy, general preventive measures include general hygiene and isolation/separation of patients. A monoclonal anti-F-protein antibody is available for passive immunization of selected high-risk children. It requires monthly injections, comes at a high cost and has limited efficacy (50% against RSV hospitalization). Active immunization failed in the past, probably as the post-fusion conformation of the F-protein was used. Long-acting monoclonal antibodies (for infants) as well as stabilized pre-fusion F-protein vaccines (for immunization of pregnant women, children, older adults) produced on various platforms are in late stages of clinical development.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Techit Thavorasak ◽  
Monrat Chulanetra ◽  
Kittirat Glab-ampai ◽  
Karsidete Teeranitayatarn ◽  
Thaweesak Songserm ◽  
...  

Porcine epidemic diarrhea virus (PEDV) causes devastating enteric disease that inflicts huge economic damage on the swine industry worldwide. A safe and highly effective PEDV vaccine that contains only the virus-neutralizing epitopes (not enhancing epitope), as well as a ready-to-use PEDV neutralizing antibody for the passive immunization of PEDV vulnerable piglets (during the first week of life) are needed, particularly for PEDV-endemic farms. In this study, we generated monoclonal antibodies (mAbs) to the recombinant S1 domain of PEDV spike (S) protein and tested their PEDV neutralizing activity by CPE-reduction assay. The mAb secreted by one hybrodoma clone (A3), that also bound to the native S1 counterpart from PEDV-infected cells (tested by combined co-immunoprecipitation and Western blotting), neutralized PEDV infectivity. Epitope of the neutralizing mAb (mAbA3) locates in the S1A subdomain of the spike protein, as identified by phage mimotope search and multiple sequence alignment, and peptide binding-ELISA. The newly identified epitope is shared by PEDV G1 and G2 strains and other alphacoronaviruses. In summary, mAbA3 may be useful as a ready-to-use antibody for passive immunization of PEDV-susceptible piglets, while the novel neutralizing epitope, together with other, previously known protective epitopes, have potential as an immunogenic cocktail for a safe, next-generation PEDV vaccine.


Author(s):  
V. S. Kaplin

   Bering E. proposed the principle of passive immunization at the end of the 19th century. Today, it is still used to treat tetanus, diphtheria, botulism, rabies and poisonous animal bites (snakes, spiders and scorpions). As before, equine antibodies or their fragments are used as an antidote. But the unique properties of antibodies from the yolks of chicken eggs (IgY) make it possible to use them for a wide range of therapeutic and prophylactic purposes. IgY-antibodies are used in several countries (Canada, Germany, Japan, China) on an industrial scale to produce medical and veterinary drugs to protect humans and animals against pathogens, providing highly effective immunological protection. The Romanian Romvac Company SA is a separate company in the series of manufacturers of these drugs. This company produces IgY preparations in limited batches against many antigens and practices the production of personalized antibodies directed at pathogens of a particular patient. This approach is guaranteed to damage the pathogen, however unique it may be. The authors have analyzed many review articles on the use of IgY-technology. These antibodies are nonaddictive, non-toxic, do not interact with rheumatoid factor, complement, or Fc-fragments of immunocompetent cells, and do not cause antibody-dependent reinforcement of infection. Oral administration of specific IgY-antibodies significantly reduces the manifestations of celiac disease and pathological conditions caused by activation of pathogens in the gastrointestinal tract. Passive immunization of young farm animals with IgY-antibodies is economical and practical against many mammals, birds and aquatic animals. The great potential of this new direction can provide a rapid and cost-effective breakthrough in improving the adequate food security of the Russian Federation.


2022 ◽  
Vol 3 ◽  
Author(s):  
Gabriel Rojas-Jiménez ◽  
Daniela Solano ◽  
Álvaro Segura ◽  
Andrés Sánchez ◽  
Stephanie Chaves-Araya ◽  
...  

Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03–0.09 g/L in VP-IVIg and of 0.06–0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.


Author(s):  
Thao Thu Mai ◽  
Pattanapon Kayansamruaj ◽  
Chayanit Soontara ◽  
Pattarawit Kerddee ◽  
Dinh-Hung Nguyen ◽  
...  

Tilapia lake virus (TiLV), a major pathogen of farmed tilapia, is known to be vertically transmitted. Here, we hypothesize that Nile tilapia (Oreochromis niloticus) broodstock immunized with a TiLV inactivated vaccine can mount a protective antibody response and passively transfer maternal antibodies to their fertilized eggs and larvae. To test this hypothesis, three groups of tilapia broodstock, each containing 4 males and 8 females, were immunized with either a heat-killed TiLV vaccine (HKV), a formalin-killed TiLV vaccine (FKV) (both administered at 3.6 &times;106 TCID50 per fish), or with L15 medium. Booster vaccination with the same vaccines was given 3-weeks later, and mating took place 1 week thereafter. Broodstock blood sera, fertilized eggs and larvae were collected from 6-14 weeks post-primary vaccination for measurement of TiLV-specific antibody (anti-TiLV IgM) levels. In parallel, passive immunization using sera from the immunized female broodstock was administered to na&iuml;ve tilapia juveniles to assess if antibodies induced in immunized broodstock were protective. The results showed that anti-TiLV IgM was produced in the majority of both male and female broodstock vaccinated with either the HKV or FKV and that and that these antibodies could be detected in the fertilized eggs and larvae from vaccinated broodstock. Higher levels of maternal antibody were observed in fertilized eggs from broodstock vaccinated with HKV than those vaccinated with FKV. Low levels of TiLV-IgM were detected in some of the 1-3-day old larvae but were undetectable in 7-14-day old larvae from the vaccinated broodstock, indicating a short persistence of TiLV-IgM in larvae. Moreover, passive immunization proved that antibodies elicited by TiLV vaccination were able to confer 85% to 90% protection against TiLV challenge in na&iuml;ve juvenile tilapia. In conclusion, immunization of tilapia broodstock with TiLV vaccines could be a potential strategy for the prevention of TiLV in tilapia fertilized eggs and larvae, with HKV appearing to be more promising than FKV for maternal vaccination.


2022 ◽  
Vol 2 ◽  
Author(s):  
Ciara Downey ◽  

Alzheimer Disease (AD) is the most prevalent cause of dementia, characterized by initial memory impairment and progressive cognitive decline. The exact cause of AD is not yet completely understood. However, the presence of neurotoxic amyloid-beta (Aβ) peptides in the brain is often cited as the main causative agent in AD pathogenesis. In accordance with the amyloid hypothesis, Aβ accumulation initially occurs 15-20 years prior to the development of clinical symptoms. Current therapies focus on the prodromal and preclinical stages of AD due to past treatment failures involving patients with mild to moderate AD. Passive immunization via exogenous monoclonal antibodies (mAbs) administration has emerged as a promising anti-Aβ treatment in AD. This is reinforced by the recent approval of the mAb, aducanumab. mAbs have differential selectivity in their epitopes, each recognising different conformations of Aβ. In this way, various Aβ accumulative species can be targeted. mAbs directed against Aβ oligomers, the most neurotoxic species, are producing encouraging clinical results. Through understanding the process by which mAbs target the amyloid cascade, therapeutics could be developed to clear Aβ, prevent its aggregation, or reduce its production. This review examines the clinical efficacy evidence from previous clinical trials with anti-Aβ therapeutics, in particular, the mAbs. Future therapies are expected to involve a combined-targeted approach to the multiple mechanisms of the amyloid cascade in a particular stage or disease phenotype. Additional studies of presymptomatic AD will likely join ongoing prevention trials, in which mAbs will continue to serve as the focal point.


2022 ◽  
Vol 141 ◽  
pp. 258-264
Author(s):  
Khosrow Zamani ◽  
Gholamreza Irajian ◽  
Abed Zahedi Bialvaei ◽  
Taghi Zahraei Salehi ◽  
Mohmood Khormali ◽  
...  

Author(s):  
Dongyan Zhou ◽  
Runhong Zhou ◽  
Zhiwei Chen

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been spreading worldwide since December 2019, resulting in the ongoing COVID-19 pandemic with 237 million infections and 4.8 million deaths by 11 October 2021. While there are great efforts of global vaccination, ending this pandemic has been challenged by issues of exceptionally high viral transmissibility, re-infection, vaccine-breakthrough infection, and immune escape variants of concerns. Besides the record-breaking speed of vaccine research and development, antiviral drugs including SARS-CoV-2-specific human neutralizing antibodies (HuNAbs) have been actively explored for passive immunization. In support of HuNAb-based immunotherapy, passive immunization using convalescent patients’ plasma have generated promising evidence on clinical benefits for both mild and severe COVID-19 patients. Since the source of convalescent plasma is limited, the discovery of broadly reactive HuNAbs may have significant impacts on the fight against the COVID-19 pandemic. In this review, therefore, we discuss the current technologies of gene cloning, modes of action, in vitro and in vivo potency and breadth, and clinical development for potent SARS-CoV-2-specific HuNAbs.


Author(s):  
Jasmina Grujić ◽  
Nevenka Bujandrić ◽  
Zorana Budakov-Obradović ◽  
Vladimir Dolinaj ◽  
Damir Bogdan ◽  
...  

Passive immunotherapy with convalescent COVID-19 plasma (CCP) is used as a therapeutic procedure in many countries, including Serbia. In this study, we analyzed the association between demographic factors, COVID-19 severity and the reactivity of anti-SARS-CoV-2 antibodies (Abs) in Serbian CCP donors. Individuals (n = 468) recovered from confirmed SARS-CoV-2 infection, and who were willing to donate their plasma for passive immunization of COVID-19 patients were enrolled in the study. Plasma samples were tested for the presence of IgG reactive to SARS-CoV-2 spike glycoprotein (S1) and nucleocapsid antigens. Individuals were characterized according to age, gender, comorbidities, COVID-19 severity, ABO blood type and RhD factor. Total of 420 candidates (420/468; 89.74%) reached the levels of anti-SARS-CoV-2 IgG that qualified them for inclusion in CCP donation program. Further statistical analysis showed that male individuals (p = 0.034), older age groups (p < 0.001), existence of hypertension (p = 0.008), and severe COVID-19 (p = 0.000) are linked with higher levels of anti-SARS-CoV-2 Abs. These findings will guide the selection of CCP donors in Serbia. Further studies need to be conducted to assess the neutralization potency and clinical efficiency of CCP collected from Serbian donors with high anti-SARS-CoV-2 IgG reactivity.


Sign in / Sign up

Export Citation Format

Share Document