temporal bisection
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chun-Chun Weng ◽  
Ning Wang ◽  
Yu-Han Zhang ◽  
Jin-Yan Wang ◽  
Fei Luo

Pain has not only sensory, but also emotional and cognitive, components. Some studies have explored the effect of pain on time perception, but the results remain controversial. Whether individual pain-related emotional and cognitive factors play roles in this process should also be explored. In this study, we investigated the effect of electrical stimulation–induced pain on interval timing using a temporal bisection task. During each task session, subjects received one of five types of stimulation randomly: no stimulus and 100 and 300 ms of non-painful and painful stimulation. Pain-related emotional and cognitive factors were measured using a series of questionnaires. The proportion of “long” judgments of a 1,200-ms visual stimulus duration was significantly smaller with 300 ms painful stimulation than with no stimulus (P < 0.0001) and 100 ms (P < 0.0001) and 300 ms (P = 0.021) non-painful stimulation. The point of subjective equality (PSE) did not differ among sessions, but the average Weber fraction (WF) was higher for painful sessions than for no-stimulus session (P = 0.022). The pain fear score correlated positively with the PSE under 100 ms non-painful (P = 0.031) and painful (P = 0.002) and 300 ms painful (P = 0.006) stimulation. Pain catastrophizing and pain anxiety scores correlated significantly with the WF under no stimulus (P = 0.005) and 100 ms non-painful stimulation (P = 0.027), respectively. These results suggest that electrical stimulation–induced pain affects temporal sensitivity, and that pain-related emotional and cognitive factors are associated with the processing of time perception.


2021 ◽  
Author(s):  
Emily A. Williams ◽  
Ruth Ogden ◽  
Andrew James Stewart ◽  
Luke Anthony Jones

Trains of auditory clicks increase subsequent judgements of stimulus duration by approximately 10%. Scalar timing theory suggests this is due to a 10% increase in pacemaker rate, a main component of the internal clock. The effect has been demonstrated in many timing tasks, including verbal estimation, temporal generalisation, and temporal bisection. However, the effect of click trains has yet to be examined on temporal sensitivity, commonly measured by temporal difference thresholds. We sought to investigate this both experimentally; where we found no significant increase in temporal sensitivity, and computationally; by modelling the temporal difference threshold task according to scalar timing theory. Our experimental null result presented three possibilities which we investigated by simulating a 10% increase in pacemaker rate in a newly-created scalar timing theory model of thresholds. We found that a 10% increase in pacemaker rate led to a significant improvement in temporal sensitivity in only 8.66% of 10,000 simulations. When a 74% increase in pacemaker rate was modelled to simulate the filled-duration illusion, temporal sensitivity was significantly improved in 55.36% of simulations. Therefore, scalar timing theory does predict improved temporal sensitivity for a faster pacemaker, but the effect of click trains (a supposed 10% increase) appears to be too small to be reliably found in the temporal difference threshold task.


2021 ◽  
Vol 47 (2) ◽  
pp. 163-182
Author(s):  
Renata Cambraia ◽  
Marco Vasconcelos ◽  
Jeremie Jozefowiez ◽  
Armando Machado

Author(s):  
Quentin Hallez ◽  
Nicolas Baltenneck ◽  
Anna-Rita Galiano

Abstract. This paper examines how dogs can modulate the effects of emotion on time perception. To this end, participants performed a temporal bisection task with stimulus durations presented in the form of neutral or emotional facial expressions (angry, sad, and happy faces). In the first experiment, dog owners were compared with nondog owners, while in the second experiment, students were randomly assigned to one of the three waiting groups (waiting alone, with another person, or with a dog) before being confronted with the temporal bisection task. The results showed that dogs allowed the participants to regulate the intensity of negative emotional effects, while no statistical differences emerged for the happy facial expressions. In certain circumstances, dogs could even lead the subjects to generate underestimation of time when faced with negative facial expressions.


Author(s):  
Ezgi Özoğlu ◽  
Roland Thomaschke

AbstractWe investigated whether Early Posterior Negativity (EPN) indicated the subjective dilation of time when judging the duration of arousing stimuli. Participants performed a visual temporal bisection task along with high-level and low-level arousing auditory stimuli, while we simultaneously recorded EEG. In accordance with previous studies, arousing stimuli were temporally overestimated and led to higher EPN amplitude. Yet, we observed that time dilation and EPN amplitude were significantly correlated and this effect cannot be explained by confounds from stimulus valence. We interpret our findings in terms of the pacemaker–accumulator model of human timing, and suggest that EPN indicates an arousal-based increasing of the speed of our mental clock.


Author(s):  
Xiuna Zhu ◽  
Cemre Baykan ◽  
Hermann J. Müller ◽  
Zhuanghua Shi

AbstractAlthough humans are well capable of precise time measurement, their duration judgments are nevertheless susceptible to temporal context. Previous research on temporal bisection has shown that duration comparisons are influenced by both stimulus spacing and ensemble statistics. However, theories proposed to account for bisection performance lack a plausible justification of how the effects of stimulus spacing and ensemble statistics are actually combined in temporal judgments. To explain the various contextual effects in temporal bisection, we develop a unified ensemble-distribution account (EDA), which assumes that the mean and variance of the duration set serve as a reference, rather than the short and long standards, in duration comparison. To validate this account, we conducted three experiments that varied the stimulus spacing (Experiment 1), the frequency of the probed durations (Experiment 2), and the variability of the probed durations (Experiment 3). The results revealed significant shifts of the bisection point in Experiments 1 and 2, and a change of the sensitivity of temporal judgments in Experiment 3—which were all well predicted by EDA. In fact, comparison of EDA to the extant prior accounts showed that using ensemble statistics can parsimoniously explain various stimulus set-related factors (e.g., spacing, frequency, variance) that influence temporal judgments.


2020 ◽  
Vol 8 (3-4) ◽  
pp. 299-315
Author(s):  
Ezgi Özoğlu ◽  
Roland Thomaschke

Human timing and interoception are closely coupled. Thus, temporal illusions like, for example, emotion-induced time dilation, are profoundly affected by interoceptive processes. Emotion-induced time dilation refers to the effect when emotion, especially in the arousal dimension, leads to the systematic overestimation of intervals. The close relation to interoception became evident in previous studies which showed increased time dilation when participants focused on interoceptive signals. In the present study we show that individuals with particularly high interoceptive accuracy are able to shield their timing functions to some degree from interference by arousal. Participants performed a temporal bisection task with low-arousal and high-arousal stimuli, and subsequently reported their interoceptive accuracy via a questionnaire. A substantial arousal-induced time dilation effect was observed, which was negatively correlated with participants’ interoceptive accuracy. Our findings support a pivotal role of interoception in temporal illusions, and are discussed in relation to neuropsychological accounts of interoception.


2020 ◽  
Vol 180 ◽  
pp. 104244
Author(s):  
Sho Araiba ◽  
Nicole El Massioui ◽  
Bruce L. Brown ◽  
Valérie Doyère
Keyword(s):  

2020 ◽  
pp. 1-21 ◽  
Author(s):  
Quentin Hallez ◽  
Sylvie Droit-Volet

The aim of this study was to identify the age at which parameters of timing performance in a temporal bisection task converge on an adult-like stable level. Participants in the three- to 20-year-old range were tested using a temporal bisection task with sub-second and supra-second durations. The data were divided into two samples. In the first sample, all participants were integrated into the analysis regardless of their success. In the second sample, only performers were inserted. The point of subjective equality (PSE) and the Weber Ratio (WR) were analyzed for each participant in each sample. By fitting a mathematical model to these parameters as a function of age, we showed a large inter-individual variability in the PSE, such that it does not stabilize with increasing age, i.e., during the significant period of development. Interestingly, time sensitivity (WR) shows a similar pattern through the two samples as adult-like performance appeared at an earlier age for short than for long durations. For the first sample, the modeling of WR data suggests that the children reached an adult-like time sensitivity at the age of six years for the short durations and 8½ years for the long durations. For the second sample, the developmental curve was stable at about the same age for the long duration (seven years), and at earlier age for the short durations, i.e., before three years.


Sign in / Sign up

Export Citation Format

Share Document