new chaotic system
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 49)

H-INDEX

26
(FIVE YEARS 6)

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Maryam Zolfaghari-Nejad ◽  
Mostafa Charmi ◽  
Hossein Hassanpoor

In this work, we introduce a new non-Shilnikov chaotic system with an infinite number of nonhyperbolic equilibrium points. The proposed system does not have any linear term, and it is worth noting that the new system has one equilibrium point with triple zero eigenvalues at the origin. Also, the novel system has an infinite number of equilibrium points with double zero eigenvalues that are located on the z -axis. Numerical analysis of the system reveals many strong dynamics. The new system exhibits multistability and antimonotonicity. Multistability implies the coexistence of many periodic, limit cycle, and chaotic attractors under different initial values. Also, bifurcation analysis of the system shows interesting phenomena such as periodic window, period-doubling route to chaos, and inverse period-doubling bifurcations. Moreover, the complexity of the system is analyzed by computing spectral entropy. The spectral entropy distribution under different initial values is very scattered and shows that the new system has numerous multiple attractors. Finally, chaos-based encoding/decoding algorithms for secure data transmission are developed by designing a state chain diagram, which indicates the applicability of the new chaotic system.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dongyao Zou ◽  
Ming Li ◽  
Jun Li ◽  
Zhigang Li

Aiming at the problem of a small parameter value range when a one-dimensional chaotic system presents a chaotic state, this paper proposes a new type of hybrid power exponential chaotic system (HPECS). HPECS combines the classic one-dimensional Sine chaotic system to form a new chaotic system (HPECS-SS). Experiments show that the obtained new chaotic system has better chaotic performance, a more extensive parameter value range, and higher sensitivity. Simultaneously, on the basis of HPECS-SS, a new image encryption algorithm is proposed. The algorithm uses the key generated by the SHA-512 algorithm and HPECS-SS to iteratively output the chaotic sequence, SFY algorithm combines the chaotic sequence to perform two rounds of scrambling on the plaintext sequence to obtain the scrambling sequence, and finally, through the modulus operation to diffuse the scrambling sequence to form the encryption matrix of the plaintext image, simulation experiment analysis shows that the algorithm has a large key space, good encryption effect, and security; the pixel change rate (NPCR) and the normalized average change intensity (UACI) are close to ideal values which can resist various cryptanalysis and attacks.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3217
Author(s):  
Vijayakumar M.D. ◽  
Anitha Karthikeyan ◽  
Jozef Zivcak ◽  
Ondrej Krejcar ◽  
Hamidreza Namazi

This paper reports a simple three-dimensional autonomous system with a single stable node equilibrium. The system has a constant controller which adjusts the dynamic of the system. It is revealed that the system exhibits both chaotic and non-chaotic dynamics. Moreover, chaotic or periodic attractors coexist with a single stable equilibrium for some control parameter based on initial conditions. The system dynamics are studied by analyzing bifurcation diagrams, Lyapunov exponents, and basins of attractions. Beyond a fixed-point analysis, a new analysis known as connecting curves is provided. These curves are one-dimensional sets of the points that are more informative than fixed points. These curves are the skeleton of the system, which shows the direction of flow evolution.


2021 ◽  
Vol 53 (12) ◽  
Author(s):  
Ryam Salam Abdulaali ◽  
Raied K. Jamal ◽  
Salam K. Mousa

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1127
Author(s):  
Yue Zhao ◽  
Lingfeng Liu

A chaotic system refers to a deterministic system with seemingly random irregular motion, and its behavior is uncertain, unrepeatable, and unpredictable. In recent years, researchers have proposed various image encryption schemes based on a single low-dimensional or high-dimensional chaotic system, but many algorithms have problems such as low security. Therefore, designing a good chaotic system and encryption scheme is very important for encryption algorithms. This paper constructs a new double chaotic system based on tent mapping and logistic mapping. In order to verify the practicability and feasibility of the new chaotic system, a displacement image encryption algorithm based on the new chaotic system was subsequently proposed. This paper proposes a displacement image encryption algorithm based on the new chaotic system. The algorithm uses an improved new nonlinear feedback function to generate two random sequences, one of which is used to generate the index sequence, the other is used to generate the encryption matrix, and the index sequence is used to control the generation of the encryption matrix required for encryption. Then, the encryption matrix and the scrambling matrix are XORed to obtain the first encryption image. Finally, a bit-shift encryption method is adopted to prevent the harm caused by key leakage and to improve the security of the algorithm. Numerical experiments show that the key space of the algorithm is not only large, but also the key sensitivity is relatively high, and it has good resistance to various attacks. The analysis shows that this algorithm has certain competitive advantages compared with other encryption algorithms.


2021 ◽  
pp. 2150458
Author(s):  
Xiaoxia Li ◽  
Chi Zheng ◽  
Xue Wang ◽  
Yingzi Cao ◽  
Guizhi Xu

In this paper, a new four-dimensional (4D) chaotic system with two cubic nonlinear terms is proposed. The most striking feature is that the new system can exhibit completely symmetric coexisting bifurcation behaviors and four symmetric coexisting attractors with the same Lyapunov exponents in all parameter ranges of the system when taking different initial states. Interestingly, these symmetric coexisting attractors can be considered as unusual symmetrical rotational coexisting attractors, which is a very fascinating phenomenon. Furthermore, by using a memristor to replace the coupling resistor of the new system, an interesting 4D memristive hyperchaotic system with one unstable origin is constructed. Of particular surprise is that it can exhibit four groups of extreme multistability phenomenon of infinitely many coexisting attractors of symmetric distribution about the origin. By using phase portraits, Lyapunov exponent spectra, and coexisting bifurcation diagrams, the dynamics of the two systems are fully analyzed and investigated. Finally, the electronic circuit model of the new system is designed for verifying the feasibility of the new chaotic system.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mingshu Chen ◽  
Zhen Wang ◽  
Xiaojuan Zhang ◽  
Huaigu Tian

Chaotic attractors with no equilibria, with an unstable node, and with stable node-focus are presented in this paper. The conservative solutions are investigated by the semianalytical and seminumerical method. Furthermore, multiple coexisting attractors are investigated, and circuit is carried out. To study the system’s global structure, dynamics at infinity for this new chaotic system are studied using Poincaré compactification of polynomial vector fields in R 3 . Meanwhile, the dynamics near the infinity of the singularities are obtained by reducing the system’s dimensions on a Poincaré ball. The averaging theory analyzes the periodic solution’s stability or instability that bifurcates from Hopf-zero bifurcation.


2021 ◽  
pp. 2213-2221
Author(s):  
Raied K. Jamal ◽  
Falah H. Ali ◽  
Falah A-H. Mutlak

     In this paper, two different chaotic dynamic systems are coupled using a semiconductor laser to produce a new chaotic system. These two chaotic systems are Rossler and Chua systems. X-dynamic of Rossler system was coupled optically using optical fiber as a carrier of signal with x, y, and z-dynamics of Chua system. The results were analyzed and the behavior of Chua system was found to be changing in time series which, in turn, changed the attractor. The Chua attractor was converted from double scroll to single scroll. The results obtained from connecting two different systems in chaotic behavior showed a remarkable increase in the bandwidth of Chua system. This increase in bandwidth opens up a wide field for many applications, the most important of which is in the field of secure communications.


2021 ◽  
Author(s):  
Ryam Salam Abdulaali ◽  
Raied K. Jamal ◽  
Salam K. Mousa

Abstract It is proposed in this paper that a new chaotic system may be formed by combining two distinct chaotic systems, such as the Rossler system and the Chua system, in which the x dynamic of the Rossler system is linked with the z dynamic of the Chua system, results in a new chaotic system. Some of the basic dynamic behavior is explored and examined for new system by using the Matlab program. They noticed that it was a difference in the time series of the Chua system and this in turn led to a difference in the attractor, as the attractor of the Chua system changed from double scroll to single scroll and this led to change of the bandwidth of the Chua system, meaning that the Rӧssler system affected the Chua system, which led to an increase in the possibility of using this system in secret communications.


Sign in / Sign up

Export Citation Format

Share Document