periodic composites
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 19)

H-INDEX

27
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 538
Author(s):  
Heng Zhang ◽  
Xiaohong Ding ◽  
Weiyu Ni ◽  
Yanyu Chen ◽  
Xiaopeng Zhang ◽  
...  

This paper proposes a novel density-based concurrent topology optimization method to support the two-scale design of composite plates for vibration mitigation. To have exceptional damping performance, dynamic compliance of the composite plate is taken as the objective function. The complex stiffness model is used to describe the material damping and accurately consider the variation of structural response due to the change of damping composite material configurations. The mode superposition method is used to calculate the complex frequency response of the composite plates to reduce the heavy computational burden caused by a large number of sample points in the frequency range during each iteration. Both microstructural configurations and macroscopic distribution are optimized in an integrated manner. At the microscale, the damping layer consists of periodic composites with distinct damping and stiffness. The effective properties of the periodic composites are homogenized and then are fed into the complex frequency response analysis at the macroscale. To implement the concurrent topology optimization at two different scales, the design variables are assigned for both macro- and micro-scales. The adjoint sensitivity analysis is presented to compute the derivatives of dynamic compliance of composite plates with respect to the micro and macro design variables. Several numerical examples with different excitation inputs and boundary conditions are presented to confirm the validity of the proposed methodologies. This paper represents a first step towards designing two-scale composite plates with optional dynamic performance under harmonic loading using an inverse design method.


2021 ◽  
Vol 11 (14) ◽  
pp. 6302
Author(s):  
Thanos Ioannidis ◽  
Tatjana Gric ◽  
Edik Rafailov

As a novel type of artificial media created recently, metamaterials demonstrate novel performance and consequently pave the way for potential applications in the area of functional engineering in comparison to the conventional substances. Acoustic metamaterials and plasmonic structures possess a wide variety of exceptional physical features. These include effective negative properties, band gaps, negative refraction, etc. In doing so, the acoustic behaviour of conventional substances is extended. Acoustic metamaterials are considered as the periodic composites with effective parameters that might be engineered with the aim to dramatically control the propagation of supported waves. Homogenization of the system under consideration should be performed to seek the calculation of metamaterial permittivity. The dispersion behaviour of surface waves propagating from the boundary of a nanocomposite composed of semiconductor enclosures that are systematically distributed in a transparent matrix and low-dimensional acoustic metamaterial and constructed by an array of nanowires implanted in a host material are studied. We observed the propagation of surface plasmon polaritons. It is demonstrated that one may dramatically modify the properties of the system by tuning the geometry of inclusions.


2021 ◽  
pp. 103918
Author(s):  
E.N. Vilchevskaya ◽  
V.I. Kushch ◽  
M. Kachanov ◽  
I. Sevostianov

2020 ◽  
Vol 22 (3) ◽  
pp. 683-690
Author(s):  
Dorota Kula ◽  
Ewaryst Wierzbicki ◽  
Joanna Witkowska-Dobrev ◽  
Łukasz Wodzyński

AbstractBoundary effect behavior understood as near-boundary suppression of boundary fluctuation loads is described in various ways depending on the mathematical representation of solutions and the type of the center. In the case of periodic composites, the homogenization method is decisive here. In the framework of the Tolerance Averaging Approach, developed by prof. Cz. Woźniak leading to an approximate model of phenomena related to periodic composites this effect is described by a homogeneous part of differential equation for fluctuation amplitudes and usually this approximate description of the boundary effect behavior is restricted to a single fluctuation. In this paper, contrary to the previous elaborations, the boundary effect is developed in the variant of the tolerance thermal conductivity model in which the temperature field is represented by the Fourier expansions composed by an average temperature with infinite number of Fourier terms imposed on the average temperature as tolerance fluctuation suppressed in the framework of the boundary effect.


2020 ◽  
Vol 22 (3) ◽  
pp. 719-726
Author(s):  
Ewaryst Wierzbicki ◽  
Dorota Kula ◽  
Łukasz Wodzyński

AbstractThe well-known parabolic Heat Transfer Equation is a simplest recognized description of phenomena related to the heat conductivity in solids with microstructure. However, it is a tool difficult to use due to the discontinuity of coefficients appearing here. The purpose of the paper is to reformulate this equation to the form that allows to represent solutions in the form of Fourier’s expansions. This equivalent re-formulation has the form of infinite number of equations with Fourier coefficients in expansion of the temperature field as the basic unknowns. The first term in Fourier representation, being an average temperature field, should satisfy the well-known parabolic heat conduction equation with Fourier coefficients as fields controlling average temperature behavior. The proposed description takes into account changes of the composite periodicity accompanying changes in the variable perpendicular to the surfaces separating components, concerning FGM - type materials and can be treated as the asymptotic version of Heat Transfer Equation obtained as a result of a certain limit passage where the cell size remains unchanged.


2020 ◽  
Vol 22 (3) ◽  
pp. 775-788
Author(s):  
Łukasz Wodzyński ◽  
Dorota Kula ◽  
Ewaryst Wierzbicki

AbstractIn the periodic composite materials temperature or displacement fluctuations suppressed in directions perpendicular to the periodicity surfaces should expect a damping reaction from the composite. This phenomenon, known as the boundary effect behavior has been investigated only in the framework of approximated models. In this paper extended tolerance model of heat transfer in periodic composites is used as a tool allows analytical investigations of highly oscillating boundary thermal loadings. It has been shown that mentioned reaction is dual – different for even and odd fluctuations.


Sign in / Sign up

Export Citation Format

Share Document