transwell invasion assay
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 31)

H-INDEX

4
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bo Sun ◽  
Xianyu Zheng ◽  
Weilong Ye ◽  
Pengcheng Zhao ◽  
Guowu Ma

Objectives. The aim of this research was to uncover the biological role and mechanisms of LINC01303 in oral squamous cell carcinoma (OSCC). Materials and Methods. Real-time quantitative PCR (qRT-PCR) was used to determine LINC01303 expression in OSCC tissues. Subcellular distribution of LINC01303 was examined by nuclear/cytoplasmic RNA fractionation and FISH experiments. The role of LINC01303 in the growth of TSCCA and SCC-25 was examined by CCK-8 assay, colony formation, transwell invasion assay in vitro, and xenograft tumor experiment in vivo. Dual-luciferase reporter assay was used to verify the interaction between LINC01303 and miR-429. RNA pull‐down assay was used to discover miR-429‐interacted protein, which was further examined by qRT-PCR, western blot, and rescue experiments. Results. LINC01303 expression was higher in OSCC tissues compared with adjacent nontumor tissues. LINC01303 was found to be localized in the cytoplasm of OSCC cells. Knockdown of LINC01303 inhibited OSCC cell proliferation and invasion, whereas increasing the expression of LINC01303 showed the opposite effects. Furthermore, LINC01303 served as a miR-429 “sponge” and positively regulated ZEB1 expression. Moreover, LINC01303 promoted OSCC through miR-429/ZEB1 axis both in vivo and in vitro. Conclusions. LINC01303 plays an oncogenic role in OSCC and is a promising biomarker for OSCC patients.


2021 ◽  
Author(s):  
Lu Shiyu ◽  
Feng Mingli ◽  
Tian Jiyun ◽  
Wu Chenqu ◽  
Jiang Yuanye ◽  
...  

Abstract BackgroundAs DNA demethylation protein, Ten-eleven translocation 1 (TET1) has been widely reported that is related to tumorigenesis and tumor metastasis. This study is to investigate the role and regulation mechanism of TET1 in colon cancer.Methods The TET1 and Catenin beta-1 (CTNNB1) expression level in colon cancer samples and cancer cell lines HCT116/SW480 were observed to discover the relationship between these two genes. Knockdown and overexpression of TET1 through shRNA and CRISPR technology were used to elucidate the effect of TET1 on WNT/β-catenin pathway. The 5-hmC/5-mC level were explored by bisulfate sequencing (BSP) and Chromatin immunoprecipitation (ChIP) to further explain the regulation mechanism. Combined with the reverse assay and transwell invasion assay, the cell migration and invasion ability were tested. Finally, the role of TET1 on DOX resistance was analyzed.Results TET1 downregulated in colon cancer and showed an opposite expression trend with WNT pathway associated gene CTNNB1. TET1 bound to CTNNB1 promotor and catalyzed demethylation to activate transcription of CTNNB1, inhibiting WNT/β‐catenin signaling pathways. Colon cancer cells proliferation was promoted by TET1 downregulation, which was further verified as shTET1 could upregulate the tumor invasion. The DOX addition could rescue the cell migration, compared with normal expression of TET1. Meanwhile, TET1 down-regulation was related to DOX resistances.Conclusion TET1 played as a DNA hydroxymethylation activates inhibitors of the WNT/β-catenin signaling pathway in colon tumor and TET1 down-regulation contributed to DOX-resistance, which might provide reference to targeting therapy in clinical practice.


2021 ◽  
Vol 65 (3) ◽  
Author(s):  
Wanchun Wang ◽  
Jun Yi ◽  
Degang Dong ◽  
Wenli Mao ◽  
Xuanyu Wang ◽  
...  

In this study, we aimed to investigate the role of miR-877-5p in the malignant phenotypes of prostate cancer (PCa) cells and its underlying mechanism. RT-qPCR analysis was performed to examine the expression of miR-877-5p and sperm-specific antigen 2 (SSFA2) in PCa tissues and cells. Cell counting kit-8 (CCK-8) assay, 5-ethynyl-20-deoxyuridine (EdU) assay, flow cytometry, wound-healing assay, and Transwell invasion assay were performed to determine the functional roles of miR-877-5p in PCa cells. The association of miR-877-5p with SSFA2 was determined by luciferase reporter and RNA pull-down assays. In this study, we found that the expression level of miR-877-5p was decreased in PCa tissues and cells. Functionally, overexpression of miR-877-5p exerted tumor suppressor properties in PCa cells. Mechanistically, SSFA2 was identified as a target gene of miR-877-5p, while overexpression of SSFA2 could abrogate the anti-tumor effects of miR-877-5p in PCa cells. These findings demonstrated that miR-877-5p/SSFA2 axis functioned as a potential target for PCa treatment.


2021 ◽  
Author(s):  
Ming Dong ◽  
Na Zhang ◽  
Xinxin Yu ◽  
Juan Guo ◽  
Xiao Han ◽  
...  

Abstract Background: The nasal inverted papilloma occurs mostly in the epithelium of the nasal mucosa. Histopathological manifestations of the nasal inverted papilloma are benign but it has the characteristics of aggressive growth, strong local destruction, frequent recurrence, and malignant change. Nasal inverted papilloma is a tumor with malignant biological behavior. O-GLcNAc is a posttranslational modification that is ubiquitous in cells. This seemingly simple carbohydrate modification played a key role in cell physiology and disease progression. Methods: In this study, immunohistochemical staining and western blot were used to determine the expression of O-GlcNAc in the nasal inverted papilloma; RT-qPCR was used to detect the expression of ogt. The expression levels of ogt and oga genes were detected by RT-qPCR in the SCC6 and CNE-E1 cells. An ogt and oga small-interference RNA fragment was transfected into cells to both reduce and increase the O-GlcNAc. The effect of O-GlcNAc on the proliferative ability of cells was detected by CCK8. The migration and invasion of cells was detected by wound healing assay and transwell invasion assay. Results: The expression of O-GlcNAc and ogt mRNA levels in nasal inverted papilloma were higher than that in the control group. O-GlcNAc enhanced SCC6- and CNE-E1- cell proliferative, migratory, and invasive ability. This study found that changes in the glycosylation level of O-GLcNAc affected the proliferation, invasion, and migration of the NIP.


2021 ◽  
Author(s):  
Lu Shiyu ◽  
Feng Mingli ◽  
Tian Jiyun ◽  
Wu Chenqu ◽  
Jiang Yuanye ◽  
...  

Abstract BackgroundAs DNA demethylation protein, Ten-eleven translocation 1 (TET1) has been widely reported that is related to tumorigenesis and tumor metastasis. This study is to investigate the role and regulation mechanism of TET1 in colon cancer.Methods The TET1 and Catenin beta-1 (CTNNB1) expression level in colon cancer samples and cancer cell lines HCT116/SW480 were observed to discover the relationship between these two genes. Knockdown and overexpression of TET1 through shRNA and CRISPR technology were used to elucidate the effect of TET1 on WNT/β-catenin pathway. The 5-hmC/5-mC level were explored by bisulfate sequencing (BSP) and Chromatin immunoprecipitation (ChIP) to further explain the regulation mechanism. Combined with the reverse assay and transwell invasion assay, the cell migration and invasion ability were tested. Finally, the role of TET1 on DOX resistance was analyzed.Results TET1 downregulated in colon cancer and showed an opposite expression trend with WNT pathway associated gene CTNNB1. TET1 bound to CTNNB1 promotor and catalyzed demethylation to activate transcription of CTNNB1, inhibiting WNT/β‐catenin signaling pathways. Colon cancer cells proliferation was promoted by TET1 downregulation, which was further verified as shTET1 could upregulate the tumor invasion. The DOX addition could rescue the cell migration, compared with normal expression of TET1. Meanwhile, TET1 down-regulation was related to DOX resistances.Conclusion TET1 played as a DNA hydroxymethylation activates inhibitors of the WNT/β-catenin signaling pathway in colon tumor and TET1 down-regulation contributed to DOX-resistance, which might provide reference to targeting therapy in clinical practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qiang Sun ◽  
Xueyi Gong ◽  
Jianlong Wu ◽  
Zhipeng Hu ◽  
Qiao Zhang ◽  
...  

This study primarily focused on the effect of the long noncoding RNA (lncRNA) PVT1/miR186/KLF5 axis on the occurrence and progression of cholangiocarcinoma (CCA). miR186 was found both in the lncRNA PVT1 targeting miRNAs and KLF5 targeting miRNAs using bioinformatic analysis. The expression of lncRNA PVT1 and KLF5 in the TFK-1, QBC939, and HuCCT1 cell lines and normal biliary epithelial HIBEpiC cells was detected by RT-qPCR. The significance of lncRNA PVT1 and KLF5 on cell proliferation was analyzed using the MTT assay and clone formation assay in lncRNA PVT1 and KLF5 silencing HuCCT1 cell lines and lncRNA PVT1and KLF5 overexpressing TFK-1 and QBC939 cell lines, respectively. The potential role of lncRNA PVT1 and KLF5 in cell migration was detected using the transwell invasion assay in CCA cell lines and tumor formation assay. Additionally, lncRNA PVT1 and KLF5 were proved to be highly expressed in CCA tissues and cell lines. Silencing and overexpressing of lncRNA PVT1 or KLF5 markedly inhibited or increased the cell proliferation and cell invasion in CCA cell lines, respectively. Silencing and overexpressing of lncRNA PVT1 significantly inhibited and increased the expression of KLF5 in CCA cell lines, respectively. Silencing of lncRNA PVT1 increased the expression of miR186, and silencing of miR186 increased the expression of KLF5 in CCA cell lines. Cotransfection of lncRNA PVT1 and miR186 increased the expression of KLF5 compared with controls. Overall, these results demonstrated that the lncRNA PVT1/miR186/KLF5 axis might exert a key role in the occurrence and progression of CCA, and this axis might provide a new target for treating CCA.


2021 ◽  
Vol 10 ◽  
Author(s):  
Biyin Chen ◽  
Li Song ◽  
Xiuzhen Nie ◽  
Fangfeng Lin ◽  
Zongyang Yu ◽  
...  

PurposeThis study made a systemic description for the CXCL1-dependent regulatory mechanism in colorectal cancer (CRC).MethodsBioinformatics methods were applied to obtain target mRNA CXCL1 and corresponding upstream miRNA. qRT-PCR and Western blot were performed to measure the levels of CXCL1 and miR-302e in CRC tissue and cells. Experiments including CCK-8, wound healing assay, Transwell invasion assay, and flow cytometry were conducted to assess cell biological behaviors. Dual-luciferase reporter assay was carried out for verification of the targeting relationship between CXCL1 and miR-302e. The inhibitor AG490 of JAK-STAT signaling pathway was used to identify the functional mechanism of CXCL1/JAK-STAT underlying progression of CRC, and tumor xenograft experiments were performed for further validation.ResultsCXCL1 was highly expressed in CRC tissue and cells, while miR-302e was poorly expressed. Silencing CXCL1 or overexpressing miR-302e could lead to inhibition of cell proliferation, migration, invasion but promotion of cell apoptosis of CRC. Besides, CXCL1 was identified as a direct target of miR-302e, and CXCL1 could reverse the effect of miR-302e on cell proliferation, migration, invasion, and apoptosis. Furthermore, CXCL1 functioned on CRC cell biological behaviors via activation of JAK-STAT signaling pathway.ConclusionCXCL1 could be regulated by miR-302e to inactivate JAK-STAT signaling pathway, in turn affecting cell proliferation, migration, invasion, and apoptosis of CRC. Our result provides a potential therapeutic target for CRC treatment.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110093
Author(s):  
Mingxin Liu ◽  
Hong Wu ◽  
Yiqiang Liu ◽  
Yan Tan ◽  
Songtao Wang ◽  
...  

MiR-326 functions as an antioncogene in the several types of cancer. However, the underling mechanisms through which miRNA-326 regulates the anti-carcinogenesis of lung adenocarcinoma have remained elusive. The aim of this study was to explore the role and regulatory mechanism of miR-326 in cell proliferation, invasion, migration and apoptosis in lung adenocarcinoma. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of miR-326 in human bronchial epithelial cells (HBES-2B), 4 kinds of lung adenocarcinoma cell lines (H23, H1975, H2228, H2085) and 20 lung adenocarcinoma tissues. Then, H23 cells were infected with miR-326 mimics, miR-326 inhibitors and si-ZEB1 to build up-regulated miR-326 cell lines, down-regulated ZEB1(zinc-finger-enhancer binding protein 1)cell lines, simultaneous down-regulated ZEB1 and miR-326 cell lines. Moreover, CCK-8 assay, transwell invasion assay, wound healing assay and flow cytometry assay were employed to examine the effects of miR-326 and ZEB1 on the proliferation, invasion, migration and apoptosis abilities of H23 cells. Western blot was performed to explore the effects of miR-326 and ZEB1 on the expression of invasion and migration related proteins N-cadherin, E-cadherin, MMP7, MMP13, SLUG and apoptotic proteins PARP, BAX. On the mechanism, a dual-luciferase reporter gene was used to measure the target relationship between miR-326 and ZEB1. MiR-326 expression was significantly downregulated in lung adenocarcinoma tissues and cells. Overexpression of miR-326 significantly inhibited the malignant behaviors of H23 cells. Mechanically, luciferase reporter assay showed that ZEB1 was a direct target of miR-326. MiR-326 mimic downregulated the expression of ZEB1. Furthermore, knocking down ZEB1 strongly inhibited the proliferation, invasion and migration of H23 cells but promoted apoptosis. MiR-326 could target ZEB1 to inhibit the proliferation, invasion and migration of lung adenocarcinoma cells and promote apoptosis, which is a potential therapeutic target for lung adenocarcinoma.


2021 ◽  
Vol 19 (12) ◽  
pp. 2499-2504
Author(s):  
Baochang Luo ◽  
Jing Zhang

Purpose: To investigate the effect of microRNA-16 (miR-16) on glioma cell migration and invasiveness, and the mechanism involved.Methods: MicroRNA-16 mimic or inhibitor was transfected into human glioma (SHG44) cells. Cell migration, invasiveness and morphology were determined using scratch test, Transwell invasion assay, and immunohistochemical staining, respectively. Expressions of bcl-2, MMP-9 and MMP-2, and NF-κB1 proteins were measured using Western blotting.Results: Overexpression of MicroRNA-16 significantly down-regulated MMP-9 protein in SHG44 cells (p < 0.05), but MMP-2 protein expressions in the 2 groups were comparable (p > 0.05). Protein expressions of MMP-9 and NF-κB1 were significantly down-regulated in human glioma positive cells, relative to negative control.Conclusion: MiR-16 overexpression suppresses the migration and invasiveness of SHG44 cells via the regulation of NF-κB1/MMP-9 signaling pathway, and it directly targets bcl-2 gene by inhibiting its protein expression. This finding affords a new target for developing new anti-glioma drugs. Keywords: Bcl-2, Expression, Glioma, MicroRNA-16, NF-κB1signaling pathway


Human Cell ◽  
2021 ◽  
Author(s):  
Chenye Tang ◽  
Yuntao Wu ◽  
Xiao Wang ◽  
Kean Chen ◽  
Zhiling Tang ◽  
...  

AbstractMAFG-AS1 is an oncogenic lncRNA in multiple types of cancer. However, its role in bladder cancer (BC) remains unclear. The present study aimed to investigate the function of MAFG-AS1 in BC. BC and paired non-tumor tissues were collected. Two BC cell lines HT01197 and HT-1376 were used. Dual luciferase activity assay, RT-qPCR, western blot, CCK-8, transwell invasion assay, and wound healing assay were performed. We found that MAFG-AS1 was significantly up-regulated in BC tissues and predicted a poor survival rate. MAFG-AS1 interacted with miR-125b-5p. However, the expression levels of MAFG‑AS1 and miR-125b-5p were not obviously correlated in BC tissues, and MAFG‑AS1 and miR-125b-5p did not regulate the expression of each other. Interestingly, we found that SphK1, a downstream target of miR-125b-5p, was negatively correlated with miR-125b-5p, while it was positively correlated with MAFG-AS1 across BC tissues. In addition, overexpression of MAFG‑AS1 upregulated the expression of SphK1 in BC cells, and attenuated the inhibitory effects of miR-125b-5p on the expression of SphK1. Functional assays showed that overexpression of MAFG‑AS1 promoted BC cell proliferation, migration, and invasion, while its effects were attenuated by overexpression of miR-125b-5p. Moreover, overexpression of miR-125b-5p inhibited BC cell proliferation, migration, and invasion, while its effects were alleviated by overexpression of SphK1. Taken together, our findings demonstrated that MAFG-AS1 has an oncogenic role in BC by regulating the miR-125b-5p/SphK1 axis. MAFG-AS1 might serve as a good diagnostic marker and a potential therapeutic target of BC.


Sign in / Sign up

Export Citation Format

Share Document