forecasting performance
Recently Published Documents


TOTAL DOCUMENTS

616
(FIVE YEARS 193)

H-INDEX

39
(FIVE YEARS 6)

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Sara Muhammadullah ◽  
Amena Urooj ◽  
Faridoon Khan ◽  
Mohammed N Alshahrani ◽  
Mohammed Alqawba ◽  
...  

In order to reduce the dimensionality of parameter space and enhance out-of-sample forecasting performance, this research compares regularization techniques with Autometrics in time-series modeling. We mainly focus on comparing weighted lag adaptive LASSO (WLAdaLASSO) with Autometrics, but as a benchmark, we estimate other popular regularization methods LASSO, AdaLASSO, SCAD, and MCP. For analytical comparison, we implement Monte Carlo simulation and assess the performance of these techniques in terms of out-of-sample Root Mean Square Error, Gauge, and Potency. The comparison is assessed with varying autocorrelation coefficients and sample sizes. The simulation experiment indicates that, compared to Autometrics and other regularization approaches, the WLAdaLASSO outperforms the others in covariate selection and forecasting, especially when there is a greater linear dependency between predictors. In contrast, the computational efficiency of Autometrics decreases with a strong linear dependency between predictors. However, under the large sample and weak linear dependency between predictors, the Autometrics potency ⟶ 1 and gauge ⟶ α. In contrast, LASSO, AdaLASSO, SCAD, and MCP select more covariates and possess higher RMSE than Autometrics and WLAdaLASSO. To compare the considered techniques, we made the Generalized Unidentified Model for covariate selection and out-of-sample forecasting for the trade balance of Pakistan. We train the model on 1985–2015 observations and 2016–2020 observations as test data for the out-of-sample forecast.


2022 ◽  
Vol 11 (2) ◽  
pp. 159-166
Author(s):  
Yuyun Hidayat ◽  
Titi Purwandari Sukono ◽  
Jumadil Saputra

Forecasting is an integral approach due to its ability to make informed act decisions and develop data-driven strategies. It's also used to make decisions related to current circumstances and predictions on future conditions. An integral part has been developed using visibility analysis for COVID-19 Outbreak, a lesson from Indonesia. The author identified that its topic has limited attention, especially in assessing the forecasting models. The issue comes from predicted results that are questionable or cannot be trusted without applying the visibility analysis in the forecasting model. The visibility analysis is required to assess the model's ability to forecast future events. In conjunction with the issue, this paper introduces the analysis of visibility error with the different concepts during model development for the transmission prevention measures in making the decision. This study applied a statistical approach to assess the visibility error of forecasting performance in determining how long periods of forecasting and deciding for transmission prevention measures COVID-19 pandemics. Also, we developed the visibility error of time-variant using inductive logic. The result indicated that the number of data required to perform forecasting work on the basis of forecasting model specifications. In conclusion, this study has been completed to develop the statistical formula for identifying the largest time horizon in forecasting model N = V + 2. Also, this developed model can assist the stakeholder in forecasting the number of transmission prevention and making the decision in case of COVID-19 pandemic.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Taly Purwa ◽  
Barbara Ngwarati

Air temperature is an important data for several sectors. The demand of fast, exact and accurate forecast on temperature data is getting extremely important since it is useful for planning of several important sectors. In order to forecast mean daily temperature data at 1st and 2nd Perak BMKG Station in Surabaya, this study used the univariate method, ARIMA model and multivariate method, VARIMA model with outlier detection. The best ARIMA model was selected using in-sample criteria, i.e. AIC and BIC. While for VAR model, the minimum information criterion namely AICc value was considered. The RMSE values of several forecasting horizons of out-sample data showed that the overall best model for mean daily temperature at 1st and 2nd Perak Station was the multivariate model, i.e. VARX (10,1) with four outliers incorporated in the model, indicated that it was necessary to consider the temperature from the nearest stations to improve the forecasting performance. This study recommends performing the overall best model only for short term forecasting, i.e. two weeks at maximum. By using the one week-step ahead and one day-step ahead forecasting scheme, the forecasting performance is significantly improved compared to default the k-step ahead forecasting scheme.


Energy ◽  
2022 ◽  
Vol 238 ◽  
pp. 122090
Author(s):  
Nan Wei ◽  
Lihua Yin ◽  
Chao Li ◽  
Jinyuan Liu ◽  
Changjun Li ◽  
...  

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Sebastian C. Ibañez ◽  
Carlo Vincienzo G. Dajac ◽  
Marissa P. Liponhay ◽  
Erika Fille T. Legara ◽  
Jon Michael H. Esteban ◽  
...  

Forecasting reservoir water levels is essential in water supply management, impacting both operations and intervention strategies. This paper examines the short-term and long-term forecasting performance of several statistical and machine learning-based methods for predicting the water levels of the Angat Dam in the Philippines. A total of six forecasting methods are compared: naïve/persistence; seasonal mean; autoregressive integrated moving average (ARIMA); gradient boosting machines (GBM); and two deep neural networks (DNN) using a long short-term memory-based (LSTM) encoder-decoder architecture: a univariate model (DNN-U) and a multivariate model (DNN-M). Daily historical water levels from 2001 to 2021 are used in predicting future water levels. In addition, we include meteorological data (rainfall and the Oceanic Niño Index) and irrigation data as exogenous variables. To evaluate the forecast accuracy of our methods, we use a time series cross-validation approach to establish a more robust estimate of the error statistics. Our results show that our DNN-U model has the best accuracy in the 1-day-ahead scenario with a mean absolute error (MAE) and root mean square error (RMSE) of 0.2 m. In the 30-day-, 90-day-, and 180-day-ahead scenarios, the DNN-M shows the best performance with MAE (RMSE) scores of 2.9 (3.3), 5.1 (6.0), and 6.7 (8.1) meters, respectively. Additionally, we demonstrate that further improvements in performance are possible by scanning over all possible combinations of the exogenous variables and only using a subset of them as features. In summary, we provide a comprehensive framework for evaluating water level forecasting by defining a baseline accuracy, analyzing performance across multiple prediction horizons, using time series cross-validation to assess accuracy and uncertainty, and examining the effects of exogenous variables on forecasting performance. In the process, our work addresses several notable gaps in the methodologies of previous works.


2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Peng-Yeng Yin ◽  
Ray-I Chang ◽  
Rong-Fuh Day ◽  
Yen-Cheng Lin ◽  
Ching-Yuan Hu

The rapid development of industrialization and urbanization has had a substantial impact on the increasing air pollution in many populated cities around the globe. Intensive research has shown that ambient aerosols, especially the fine particulate matter PM2.5, are highly correlated with human respiratory diseases. It is critical to analyze, forecast, and mitigate PM2.5 concentrations. One of the typical meteorological phenomena seducing PM2.5 concentrations to accumulate is temperature inversion which forms a warm-air cap to blockade the surface pollutants from dissipating. This paper analyzes the meteorological patterns which coincide with temperature inversion and proposes two machine learning classifiers for temperature inversion classification. A separate multivariate regression model is trained for the class with or without manifesting temperature inversion phenomena, in order to improve PM2.5 forecasting performance. We chose Puli township as the studied site, which is a basin city easily trapping PM2.5 concentrations. The experimental results with the dataset spanning from 1 January 2016 to 31 December 2019 show that the proposed temperature inversion classifiers exhibit satisfactory performance in F1-Score, and the regression models trained from the classified datasets can significantly improve the PM2.5 concentration forecast as compared to the model using a single dataset without considering the temperature inversion factor.


2021 ◽  
Vol 15 (1) ◽  
pp. 2
Author(s):  
Jonathan Felix Pfahler

Historically, exchange rate forecasting models have exhibited poor out-of-sample performances and were inferior to the random walk model. Monthly panel data from 1973 to 2014 for ten currency pairs of OECD countries are used to make out-of sample forecasts with artificial neural networks and XGBoost models. Most approaches show significant and substantial predictive power in directional forecasts. Moreover, the evidence suggests that information regarding prediction timing is a key component in the forecasting performance.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Faridoon Khan ◽  
Amena Urooj ◽  
Saud Ahmed Khan ◽  
Abdelaziz Alsubie ◽  
Zahra Almaspoor ◽  
...  

This research compares factor models based on principal component analysis (PCA) and partial least squares (PLS) with Autometrics, elastic smoothly clipped absolute deviation (E-SCAD), and minimax concave penalty (MCP) under different simulated schemes like multicollinearity, heteroscedasticity, and autocorrelation. The comparison is made with varying sample size and covariates. We found that in the presence of low and moderate multicollinearity, MCP often produces superior forecasts in contrast to small sample case, whereas E-SCAD remains better. In the case of high multicollinearity, the PLS-based factor model remained dominant, but asymptotically the prediction accuracy of E-SCAD significantly enhances compared to other methods. Under heteroscedasticity, MCP performs very well and most of the time beats the rival methods. In some circumstances under large samples, Autometrics provides a similar forecast as MCP. In the presence of low and moderate autocorrelation, MCP shows outstanding forecasting performance except for the small sample case, whereas E-SCAD produces a remarkable forecast. In the case of extreme autocorrelation, E-SCAD outperforms the rival techniques under both the small and medium samples, but further augmentation in sample size enables MCP forecast more accurate comparatively. To compare the predictive ability of all methods, we split the data into two halves (i.e., data over 1973–2007 as training data and data over 2008–2020 as testing data). Based on the root mean square error and mean absolute error, the PLS-based factor model outperforms the competitor models in terms of forecasting performance.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Faridoon Khan ◽  
Amena Urooj ◽  
Kalim Ullah ◽  
Badr Alnssyan ◽  
Zahra Almaspoor

This work compares Autometrics with dual penalization techniques such as minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) under asymmetric error distributions such as exponential, gamma, and Frechet with varying sample sizes as well as predictors. Comprehensive simulations, based on a wide variety of scenarios, reveal that the methods considered show improved performance for increased sample size. In the case of low multicollinearity, these methods show good performance in terms of potency, but in gauge, shrinkage methods collapse, and higher gauge leads to overspecification of the models. High levels of multicollinearity adversely affect the performance of Autometrics. In contrast, shrinkage methods are robust in presence of high multicollinearity in terms of potency, but they tend to select a massive set of irrelevant variables. Moreover, we find that expanding the data mitigates the adverse impact of high multicollinearity on Autometrics rapidly and gradually corrects the gauge of shrinkage methods. For empirical application, we take the gold prices data spanning from 1981 to 2020. While comparing the forecasting performance of all selected methods, we divide the data into two parts: data over 1981–2010 are taken as training data, and those over 2011–2020 are used as testing data. All methods are trained for the training data and then are assessed for performance through the testing data. Based on a root-mean-square error and mean absolute error, Autometrics remain the best in capturing the gold prices trend and producing better forecasts than MCP and SCAD.


2021 ◽  
pp. 1-28
Author(s):  
Simon Schnürch ◽  
Ralf Korn

Abstract The Lee–Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network (NN) architecture for mortality rate forecasting, empirically compare this model as well as other NN models to the Lee–Carter model and find that lower forecast errors are achievable for many countries in the Human Mortality Database. We provide details on the errors and forecasts of our model to make it more understandable and, thus, more trustworthy. As NN by default only yield point estimates, previous works applying them to mortality modeling have not investigated prediction uncertainty. We address this gap in the literature by implementing a bootstrapping-based technique and demonstrate that it yields highly reliable prediction intervals for our NN model.


Sign in / Sign up

Export Citation Format

Share Document