selenium concentration
Recently Published Documents


TOTAL DOCUMENTS

468
(FIVE YEARS 83)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Edward J. M. Joy ◽  
Alexander A. Kalimbira ◽  
Joanna Sturgess ◽  
Leonard Banda ◽  
Gabriella Chiutsi-Phiri ◽  
...  

Background: Selenium deficiency is widespread in the Malawi population. The selenium concentration in maize, the staple food crop of Malawi, can be increased by applying selenium-enriched fertilizers. It is unknown whether this strategy, called agronomic biofortification, is effective at alleviating selenium deficiency.Objectives: The aim of the Addressing Hidden Hunger with Agronomy (AHHA) trial was to determine whether consumption of maize flour, agronomically-biofortified with selenium, affected the serum selenium concentrations of women, and children in a rural community setting.Design: An individually-randomized, double-blind placebo-controlled trial was conducted in rural Malawi. Participants were randomly allocated in a 1:1 ratio to receive either intervention maize flour biofortified with selenium through application of selenium fertilizer, or control maize flour not biofortified with selenium. Participant households received enough flour to meet the typical consumption of all household members (330 g capita−1 day−1) for a period of 8 weeks. Baseline and endline serum selenium concentration (the primary outcome) was measured by inductively coupled plasma mass spectrometry (ICP-MS).Results: One woman of reproductive age (WRA) and one school-aged child (SAC) from each of 180 households were recruited and households were randomized to each group. The baseline demographic and socioeconomic status of participants were well-balanced between arms. No serious adverse events were reported. In the intervention arm, mean (standard deviation) serum selenium concentration increased over the intervention period from 57.6 (17.0) μg L−1 (n = 88) to 107.9 (16.4) μg L−1 (n = 88) among WRA and from 46.4 (14.8) μg L−1 (n = 86) to 97.1 (16.0) μg L−1 (n = 88) among SAC. There was no evidence of change in serum selenium concentration in the control groups.Conclusion: Consumption of maize flour biofortified through application of selenium-enriched fertilizer increased selenium status in this community providing strong proof of principle that agronomic biofortification could be an effective approach to address selenium deficiency in Malawi and similar settings.Clinical Trial Registration:http://www.isrctn.com/ISRCTN85899451, identifier: ISRCTN85899451.


Author(s):  
Danielle Diniz Vilela ◽  
Allisson Benatti Justino ◽  
Douglas Carvalho Caixeta ◽  
Adriele Vieira Souza ◽  
Renata Roland Teixeira ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7084
Author(s):  
Francesca Gorini ◽  
Laura Sabatino ◽  
Alessandro Pingitore ◽  
Cristina Vassalle

Selenium (Se), a microelement essential for life, is critical for homeostasis of several critical functions, such as those related to immune–endocrine function and signaling transduction pathways. In particular, Se is critical for the function of the thyroid, and it is particularly abundant in this gland. Unfortunately, Se deficiency is a very common condition worldwide. Supplementation is possible, but as Se has a narrow safety level, toxic levels are close to those normally required for a correct need. Thus, whether the obtaining of optimal selenium concentration is desirable, the risk of dangerous concentrations must be equally excluded. This review addressed the contribution by environment and food intake on Se circulating levels (e.g., geographical factors, such as soil concentration and climate, and different quantities in food, such as nuts, cereals, eggs, meat and fish) and effects related to its deficiency or excess, together with the role of selenium and selenoproteins in the thyroid pathophysiology (e.g., Hashimoto’s thyroiditis and Graves’ disease).


Author(s):  
Jill Portnoy ◽  
Jessica Wang ◽  
Fenfen Wang ◽  
Phoebe Um ◽  
Sharon Y. Irving ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10646
Author(s):  
Louis Larrouquère ◽  
Sylvie Berthier ◽  
Benoit Chovelon ◽  
Catherine Garrel ◽  
Véronique Vacchina ◽  
...  

Glioblastoma (GBM) is the most aggressive malignant glioma, with a very poor prognosis; as such, efforts to explore new treatments and GBM’s etiology are a priority. We previously described human GBM cells (R2J-GS) as exhibiting the properties of cancer stem cells (growing in serum-free medium and proliferating into nude mice when orthotopically grafted). Sodium selenite (SS)—an in vitro attractive agent for cancer therapy against GBM—was evaluated in R2J-GS cells. To go further, we launched a preclinical study: SS was given orally, in an escalation-dose study (2.25 to 10.125 mg/kg/day, 5 days on, 2 days off, and 5 days on), to evaluate (1) the absorption of selenium in plasma and organs (brain, kidney, liver, and lung) and (2) the SS toxicity. A 6.75 mg/kg SS dose was chosen to perform a tumor regression assay, followed by MRI, in R2J-GS cells orthotopically implanted in nude mice, as this dose was nontoxic and increased brain selenium concentration. A group receiving TMZ (5 mg/kg) was led in parallel. Although not reaching statistical significance, the group of mice treated with SS showed a slower tumor growth vs. the control group (p = 0.08). No difference was observed between the TMZ and control groups. We provide new insights of the mechanisms of SS and its possible use in chemotherapy.


2021 ◽  
Author(s):  
A. I. Muhammad ◽  
A. M. Dalia ◽  
T. C. Loh ◽  
H. Akit ◽  
A. A. Samsudin

Abstract This study compares the effects of sodium selenite, selenium yeast, and enriched bacterial organic selenium protein on antioxidant enzyme activity, serum biochemical profiles, and egg yolk, serum, and tissue selenium concentration in laying hens. In a 112-d experiment, 144 Lohman Brown Classic hens, 23-wks old were divided into four equal groups, each has six replicates. They were assigned to 4 treatments: 1) a basal diet (Con), 2) Con plus 0.3 mg/kg feed sodium selenite (SS); 3) Con plus 0.3 mg/kg feed Se-yeast (SY): 4) Con plus 0.3 mg/kg feed bacterial enriched organic Se protein (ADS18) from Stenotrophomonas maltophilia bacteria. On d 116, hens were euthanized (slaughtered) to obtain blood (serum), liver organ, and breast tissue to measure antioxidant enzyme activity, biochemical profiles, and selenium concentration. The results show that antioxidant enzyme activity of hens was increased when fed bacterial organic Se (ADS18), resulting in a significant (P < 0.05) increase in serum GSH-Px, SOD, and CAT activity compared to other treatment groups. However, ADS18 and SY supplementation increase (P < 0.05) hepatic TAC, GSH-Px, and CAT activity, unlike the SS and Con group. Similarly, dietary Se treatment reduced total cholesterol and serum triglycerides concentrations significantly (P < 0.05) compared to the Con group. At 16 and 18 weeks, selenium concentration in hen egg yolks supplemented with dietary Se was higher (P < 0.05) than in Con, with similar patterns in breast tissue and serum. Supplementation with bacterial organic Se (ADS18) improved antioxidant enzyme activity, decreased total serum cholesterol and serum lipids, and increased Se deposition in egg yolk, tissue, and serum. Hence, organic Se may be considered a viable source of Se in laying hens.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2701
Author(s):  
Ying Ju ◽  
Mingzhi Liu ◽  
Liling Huang ◽  
Yanglan Luo ◽  
Liangliang Qi ◽  
...  

Selenium Auricularia cornea culture (SAC) is a new source of organic selenium. Two experiments were conducted to determine the available energy of SAC fed to pigs and to evaluate the effects of dietary SAC supplementation on growth performance, serum biochemical profiles, fecal short chain fatty acids (SCFA), meat quality, tissue selenium concentration, and oxidative stability of fresh meat in growing-finishing pigs. In Experiment (Exp.) 1, 12 barrows with average body weight (BW) of 42.40 ± 5.30 kg were randomly allotted to two groups and fed the basal diet and SAC-supplemented diet, individually. In Exp. 2, 96 growing-finishing pigs (BW: 91.96 ± 7.55 kg) were grouped into four dietary treatments; each treatment contained six replicates with four pigs per replicate. The four treatments fed a control diet and three experimental diets supplemented with 0.6%, 1.2%, and 2.4% SAC, respectively. The trial lasted for 45 days. The results revealed that digestible energy (DE) of SAC was 11.21 MJ/kg. The average daily gain (ADG) was improved in pigs fed 1.2% and 2.4% SAC during day 24 to 45 and the overall period. Dietary 1.2% and 2.4% SAC supplementation had a lower F/G (p < 0.05) than the control diet during different stages. Dietary SAC supplementation increased fecal butyrate contents (p < 0.05), and pigs fed 1.2% and 2.4% SAC diets had a higher MCT1 mRNA expression (p = 0.04) in the colon. Pigs fed 2.4% SAC had higher GSH-Px contents (p < 0.05) in serum, liver, and longissimus dorsi muscle (LDM) than those in the control group. The 2.4% SAC-supplemented group revealed a higher Se content (p < 0.05) in LDM and a lower MDA concentration (p < 0.05) in fresh meat during the simulated retail display on day six. In conclusion, this study suggested that SAC was more effective in improving growth, enhancing the antioxidant status, depositing Se in muscle, and increasing meat oxidative stability of pigs.


Sign in / Sign up

Export Citation Format

Share Document