geotechnical design
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 74)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 961 (1) ◽  
pp. 012004
Author(s):  
Haneen Mohammed Ali ◽  
Ressol R Shakir

Abstract Soil is a natural material that suffers from intrinsic spatial variability resulting from natural factors and their influence on the soil. It became controversial and debated how to estimate the characteristic value of soils to obtain a reliable geotechnical design with low cost and less effort. Usually, foundations are not built on the same site as the screening; investigations are carried out to excavate a little at essential sites. In this paper (423), test wells were collected in the study area to be obtained and tabulated in Excel. The kriging statistics is applied using a python script to predict the values of geotechnical site properties and reliability of the method in estimating spatially varying soil properties values based on measurement data and prior knowledge. The program implements probabilistic kriging statistics and predicts the desired value by entering the coordinates of the locations whose properties you want to know and based on the previously prepared Excel file of known points, coordinates, and property values. The program will be used in two soil sites in the city of Nasiriyah to predict its properties. These points were selected from the examination of soil investigation reports to determine the reliability and accuracy of the program in predicting values. To get more reliable probability values using the kriging method and python scripts. A huge database of prepared and analyzed engineering soil properties has been created based on field investigation reports for projects in Nasiriyah.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Łukasz Grabowski ◽  
Monika Mitew-Czajewska

Abstract With the growing rate of urbanisation, deep foundations are playing an ever-larger role in the development of cities, reaching deeper than before to fulfil the requirements of new constructions. While current European standards include design procedures for structural and geotechnical design, they lack provisions for massive deep foundations with regard to early-age thermal effects. This paper presents aspects of the phenomenon especially important for deep foundations and discusses normative requirements that influence their thermal behaviour. Further, the paper describes the methods and results of the research carried out in the United Kingdom on 1.50-m-thick diaphragm walls of a deep circular shaft. Shaft features are described, as well as the materials used. The measurements were carried out using vibrating wire strain gauges coupled with temperature readings. The results presented refer to one of the test panels concreted in January 2020. The temperature results are analysed together with the influence of work scheduling on the readings. Strain results that indicate contractive behaviour of the test panel are investigated together with the possible causes leading to such readings. Plans and directions for future research are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4129
Author(s):  
Mehmet Murat Monkul ◽  
Hakkı O. Özhan

Microplastic contamination is a growing threat to marine and freshwater ecosystems, agricultural production, groundwater, plant growth and even human and animal health. Disintegration of plastic products due to mainly biochemical or physical activities leads to the formation and existence of microplastics in significant amounts, not only in marine and freshwater environments but also in soils. There are several valuable studies on microplastics in soils, which have typically focused on environmental, chemical, agricultural and health aspects. However, there is also a need for the geotechnical engineering perspective on microplastic contamination in soils. In this review paper, first, degradation, existence and persistence of microplastics in soils are assessed by considering various studies. Then, the potential role of solid waste disposal facilities as a source for microplastics is discussed by considering their geotechnical design and addressing the risk for the migration of microplastics from landfills to soils and other environments. Even though landfills are considered as one of the main geotechnical structures that contribute to the formation of considerably high amounts of microplastics and their contamination in soils, some other geotechnical engineering applications (i.e., soil improvement with tirechips, forming engineering fills with dredged sediments, soil improvement with synthetic polymer-based fibers, polystyrene based lightweight fill applications), as potential local source for microplastics, are also mentioned. Finally, the importance of geotechnical engineering as a mitigation tool for microplastics is emphasized and several important research topics involving geotechnical engineering are suggested.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012009
Author(s):  
C L Olsen ◽  
K Krabbenhøft

Abstract The design of counter-acts for the Ormen Lange Northern Field Development has previously been considered in other publications. Counter-acts were used to ensure pipeline stability during pipe-lay along route curves. The counter-acts were large diameter steel cylinders installed with self-weight penetration. The in-place design was completed with use of advanced Finite Element Analysis (FEA) program Abaqus and validated in parallel by the finite difference (FD) program, FLAC. This paper will present a comparison of the previous work to advanced 3D Finite Element Limit Analysis (FELA) with use of the software OPTUM G3. 3D FELA is newly developed for geotechnical design. The paper will show the advantage of the FELA which is based on the principles of limit analysis. The counter-act design is particularly complex and given the cylindrical shape with no internal base plate. This will challenge the element types in the FELA model. Further, the soil conditions are amongst the softest clay encountered in Norway further increasing the complexity of the design.


2021 ◽  
Vol 889 (1) ◽  
pp. 012053
Author(s):  
Adil Ahmad Magray ◽  
Amanpreet Tangri ◽  
Zehra Khan ◽  
Naiyara Khan

Abstract Gravity based structures are in play from early times. Numerous structures are being installed around the globe. These structures had shown a rigid face towards the harsh conditions/situation in the offshore environment. The key factors for sustainability are geotechnical design and the sub soil survey. These structures are used for collection, transport and also for temporary storage of crude gas and oil. These structures serve as a bridge between the much need fuel and the modern world. The installation of GBS involves major wings of modern engineering i.e. Mechanical, Structural, architecture and Geotechnical engineering because these structures are a great challenge as considering the harsh and hard off shore conditions. These structures are having a much importance apart from its features i.e. from the point of economy, as the oil prices are touching the heights, it influences construction of GBS. Now a days most of the multinational companies are focusing towards the construction of offshore GBS, as well as paying much attention on research work off these structures because to make huge profit. In this paper an effort has been made to understand the different aspects which are related to GBS i.e. pre-construction operations, soil investigation, construction, installment and some of the safety aspects as considering it one of the most focused topics now and in future.


Author(s):  
Shruti Birhare

Abstract: The significance of wind turbines in meeting the expanding energy demand is critical. Taller towers should be employed to boost the power producing capability. The foundation must be efficient in order to securely carry the heavier loads of taller towers. When sustaining loads from superstructure are considered then bearing capacity of raft is taken into account for pile raft foundation. Piles help to strengthen the raft's bearing capacity while also regulating settlement in this arrangement, particularly differential settlement. A hybrid foundation, i.e. a pile raft foundation, is investigated and geotechnically designed here. The effectiveness of this system is demonstrated using the measures total settlement, differential settlement, and rotation. Keywords: Pile raft foundation, differential settlement, total settlement, wind turbin, bearing capacity


2021 ◽  
Vol 11 (18) ◽  
pp. 8423
Author(s):  
Filip Dodigović ◽  
Krešo Ivandić ◽  
Meho-Saša Kovačević ◽  
Božo Soldo

In this paper a modification of the reliability-based robust geotechnical design (RGD) method is proposed. The intention of the proposed modifications is to simplify the method, make it less computationally expensive, and harmonise of the results with Eurocode 7. The complexity of the RGD method mainly stems from the calculation of the design’s robustness measure, which is the feasibility robustness index (ββ). Due to this fact, the replacing of the existing robustness measure with a generalised reliability index (β) is considered. It was demonstrated that β fits into the robustness concept, and is traditionally used as a construction reliability measure, making it intuitive and “user friendly”. It is proposed to conduct a sensitivity analysis using Soboli indices, with the aim of freezing the variables whose contribution to the system response variance is negligible, which will further simplify the method. By changing the robustness measure, the number of the required reliability analyses is significantly decreased. Further reduction is achieved by conducting analyses only for the designs chosen in the scope of the genetic algorithm. The original RGD method is used as an extension of traditional reliability-based design. By applying the proposed modifications, the RGD method can be used as an alternative to the classic and reliability-based design method.


2021 ◽  
Author(s):  
Mahdi O. Karkush ◽  
Mahmoud S. Abdul Kareem ◽  
Sivakumar Babu

Abstract This study aims to use the concept of sustainability and provide guidance to geotechnical engineers to contribute towards greater sustainability in geotechnical design and construction. The methodology of the sustainability framework aims to support indicators and tools used in the sustainability concept in geotechnical engineering. In addition, available indicators will be used to analyze the role of natural resources, social impacts, environmental and economic aspects. In order to demonstrate the sustainability assessment approach, a case study is evaluated using the methodology of sustainability framework by using Multi-Criteria Analysis (MCA). The assessment is studied for raft footing and deep foundations (driven and bored piles A foundation treatment of 15×15 m and 0.45 m thickness to carry a high static load or to carry cyclic loading is analyzed. The results indicate the calculations of sustainability indices from the multicriteria analysis show that the option of raft footing than deep foundation if raft provides adequate allowable load by improving the soil using lime piles technique is sustainable.


Sign in / Sign up

Export Citation Format

Share Document