interface boundary conditions
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Jiangming Xie ◽  
Maojun Li ◽  
Miao-Jung Ou

n this work, we investigate the poroelastic waves by solving the time-domain Biot-JKD equation with an efficient numerical method. The viscous dissipation occurring in the pores depends on the square root of the frequency and is described by the Johnson-Koplik-Dashen (JKD) dynamic tortuosity/permeability model. The temporal convolutions of order 1/2 shifted fractional derivatives are involved in the time-domain Biot-JKD model, causing the problem to be stiff and challenging to be implemented numerically. Based on the best relative approximation of the square-root function, we design an efficient algorithm to approximate and localize the convolution kernel by introducing a finite number of auxiliary variables that satisfy a local system of ordinary differential equations. The imperfect hydraulic contact condition is used to describe the interface boundary conditions and the Runge-Kutta discontinuous Galerkin (RKDG) method together with the splitting method is applied to compute the numerical solutions. Several numerical examples are presented to show the accuracy and efficiency of our approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Cheng Sun ◽  
Zai-Lin Yang ◽  
Guan-Xi-Xi Jiang ◽  
Yong Yang

A stable and accurate finite-difference discretization of first-order elastic wave equations is derived in this work. To simplify the origin and proof of the formulas, a symmetric matrix form (SMF) for elastic wave equations is presented. The curve domain is discretized using summation-by-parts (SBP) operators, and the boundary conditions are weakly enforced using the simultaneous-approximation-term (SAT) technique, which gave rise to a provably stable high-order SBP-SAT method via the energy method. In addition, SMF can be extended to wave equations of different types (SH wave and P-SV wave) and dimensions, which can simplify the boundary derivation process and improve its applicability. Application of this approximation can divide the domain into a multiblock context for calculation, and the interface boundary conditions of blocks can also be used to simulate cracks and other structures. Several numerical simulation examples, including actual elevation within the area of Lushan, China, are presented, which verifies the viability of the framework present in this paper. The applicability of simulating elastic wave propagation and the application potential in the seismic numerical simulation of this method are also revealed.


Author(s):  
David R. Noble ◽  
Alec Kucala ◽  
Mario J. Martinez

An enriched finite element method is described for capillary hydrodynamics including dynamic wetting. The method is enriched via the Conformal Decomposition Finite Element Method (CDFEM). Two formulations are described, one with first-order accuracy and one with second-order accuracy in time. Both formulations utilize a semi-implicit form for the surface tension that is shown to effectively circumvent the explicit capillary time step limit. Sharp interface boundary conditions are developed for capturing the dynamic contact angle as the fluid interface moves along the wall. By virtue of the CDFEM, the contact line is free to move without risk of mesh tangling, but is sharply captured. Multiple problems are used to demonstrate the effectiveness of the methods.


2016 ◽  
Vol 24 (9) ◽  
pp. 1707-1715 ◽  
Author(s):  
LB Qi ◽  
YS Wu ◽  
MS Zou ◽  
Yong Duan ◽  
MX Shen

The three-dimensional sono-elasticity method recently developed by Zou ((2014) Three-dimensional sono-elasticity of ships. PhD Dissertation, China Ship Scientific Research Center, China) and Wu ((1984) Hydroelasticity of floating bodies. PhD Dissertation, Brunel University, UK) is employed to explore the acoustic and vibrational characteristics of a propeller–shaft–hull coupled system. The acoustic field can be solved by introducing Green’s function for the ideal compressible fluid together with the Price–Wu generalized fluid–structure interface boundary conditions. The vibration of a ship structure is governed by the generalized equations, including added mass, damping and restoring coefficients. In order to discover the mechanisms underlying the acoustic and vibrational characteristics of the propeller–shaft–hull coupled system, numerical models for hull structures with a shaft and without a shaft are designated. Through modal analysis, the correlations of the line spectra of acoustic radiation and the corresponding vibration modes of the hull are clearly identified. Through further numerical analysis, the appropriate location of the base for the thrust bearing and installation schemes are recommended.


2016 ◽  
Vol 19 (1) ◽  
pp. 124-142 ◽  
Author(s):  
Haitian Lu ◽  
Ning Zhao ◽  
Donghong Wang

AbstractA front tracking method combined with the real ghost fluid method (RGFM) is proposed for simulations of fluid interfaces in two-dimensional compressible flows. In this paper the Riemann problem is constructed along the normal direction of interface and the corresponding Riemann solutions are used to track fluid interfaces. The interface boundary conditions are defined by the RGFM, and the fluid interfaces are explicitly tracked by several connected marker points. The Riemann solutions are also used directly to update the flow states on both sides of the interface in the RGFM. In order to validate the accuracy and capacity of the new method, extensive numerical tests including the bubble advection, the Sod tube, the shock-bubble interaction, the Richtmyer-Meshkov instability and the gas-water interface, are simulated by using the Euler equations. The computational results are also compared with earlier computational studies and it shows good agreements including the compressible gas-water system with large density differences.


2016 ◽  
Vol 42 ◽  
pp. 1660153
Author(s):  
HAI TIAN LU ◽  
NING ZHAO ◽  
DONGHONG WANG

In this paper, we investigate the conservation error of the two-dimensional compressible two-medium flow simulated by the front tracking method. As the improved versions of the original ghost fluid method, the modified ghost fluid method and the real ghost fluid method are selected to define the interface boundary conditions, respectively, to show different effects on the conservation error. A Riemann problem is constructed along the normal direction of the interface in the front tracking method, with the goal of obtaining an efficient procedure to track the explicit sharp interface precisely. The corresponding Riemann solutions are also used directly in these improved ghost fluid methods. Extensive numerical examples including the sod tube and the shock-bubble interaction are tested to calculate the conservation error. It is found that these two ghost fluid methods have distinctive performances for different initial conditions of the flow field, and the related conclusions are made to suggest the best choice for the combination.


Sign in / Sign up

Export Citation Format

Share Document