composite flours
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 90)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 21 (105) ◽  
pp. 18965-18979
Author(s):  
MS Wasswa ◽  
◽  
R Fungo ◽  
JH Muyonga ◽  

Undernutrition is a major public health concern in Uganda. Locally available nutrient dense diets can help reduce the problem of undernutrition. Utilisation of cowpea leaf powder in preparing composite porridge blends depends on sensory acceptance of the consumers. A Nutrisurvey software was used to formulate two composite flour blends, namely maize and millet in a ratio 2:8 and cowpea-maize in a ratio of 1:9 to achieve the daily requirement of protein for children. The study developed a process for the production of composite cowpea flour from finger millet flour and maize flour and followed a one factor design in which maize flour (MF) and millet flour (MMF) was substituted with cowpea leaves flour (CPL). The composites were dried using refractance window drying technology. The proximate composition of the composite flours were determined using standard methods while sensory acceptability of porridges was rated on a five-point Likert scale using an untrained panel. Results indicated a significant (p < 0.05) increase in protein (10.9 to 13.4%), dietary fibre (11.01 to 13.0%) and lipids (4.71 to 5.3%) contents for cowpea-millet composite porridge. For cowpea-maize composite flour, a significant (p < 0.05) increase in protein (5.9 to 7.6%), dietary fibre (1.47 to 3.3%) and lipids (2.84 to 3.3%) was also observed. Sensory evaluation indicated that between the two composite porridges, the cowpea-millet porridge blend was significantly (P≤0.05) more appealing in terms of colour (3.61±0.8), aroma (2.96±0.2), taste (3.24±0.6), texture (3.62±0.6) and general acceptability (3.61±0.8) to the panellists than the cowpea-maize porridge blend. The cowpea-millet and cowpea-maize composite flours can contribute more than 100% of the recommended dietary allowance of protein and carbohydrate requirements for children aged 0-8 years. The study findings indicate that the cowpea-based composite flours have the potential to make a significant contribution to the improvement in the nutritional status of infants and children in developing countries.


2021 ◽  
Author(s):  
Marijana Simic

The present study was carried out to demonstrate the combined effects of different maize flour, ascorbic acid and sugar on the physical, textural and sensory properties of composite breads. The composite flour was prepared using 70% of wheat flour and 30% of flour obtained from grain of differently coloured maize - light blue, blue, red and yellow maize flour. Chemical characterization of composite flours made with four different types of maize was also assessed. Furthermore, the content of total phenolics, flavonoids, anthocyanins, phenolic acids and antioxidant capacity in composite flours was determined. The total of 12 breads that were prepared, four of which were control composite breads, four breads with ascorbic acid, and four were breads with ascorbic acid and sugar. The content of total phenolic compounds showed clear differences among all composite flours. The anthocyanins content determined in composite flours was in the following descending order: blue>red>light blue, while in the yellow maize composite flour anthocyanins were not detected. The results showed that the addition of AsA (0.025%) and sugar (5%) negatively affected the volume as well as the specific volume of composite wheat-maize breads. The texture analysis showed that the addition of AsA in amount of 0.025% had no impact on springiness, cohesiveness and resilience of bread crumb, while it increased crumb hardness. However, composite breads made with AsA and AsA and sugar showed a more compact structure, with a larger number of cells and smaller mean cell areas. Bread samples with AsA and sugar in the tested doses had the lowest springiness, which is indicative of brittleness and reflects the tendency of the bread to crumble when slicing. Results of the sensory evaluation revealed that the AsA and sugar addition had a generally positive effect on the investigated sensory attributes.


2021 ◽  
pp. 23-35
Author(s):  
J. N. Okafor ◽  
J. N. Ishiwu ◽  
J. E. Obiegbuna

The aim of this research was to produce acceptable ‘fufu’ from a mixture of sorghum, millet, and African yam bean flours that will have a moderate carbohydrate and protein content with most optimized texture. The functional and sensory properties of flour blends produced from Sorghum, Millet and African yam bean was studied. Sorghum, Millet and African yam bean were processed into flour and mixed at different ratios to obtain composite flours. The flour formulations obtained were analyzed for water absorption capacity, bulk density, least gelation concentration , and viscosity .The  water absorption capacity ranged from 1.00 to 3.00,  the bulk density ranged from 0.56 to 0.82;the least gelation concentration ranged from 5.77 to 6.87,while the viscosity ranged from 0.956 to 9.30.Also proximate composition of the individual flours before formulation  was analyzed, it ranged from 6.13 to 8.46 moisture, 2.00 to 4.67 ash, 0.17 to 8.00 fiber,5.47 to 8.61 fat, 7.57 to 21.84 protein, 58.34 to 69.27 carbohydrate.The sensory values ranged from 5.60 to 6.45 for taste; 4.25 to 6.85  for colour; 5.15 to 6.80 for texture; 3.85 to 5.70 for aroma; 5.45 to 6.45 acceptability. Sample 10 (with the ratio of 40:70:20) had the highest rating for general acceptability. It was observed that sample 1(with the ratio of 60:50:60) had the lowest rating in taste and aroma. The mixture components that could produce optimum texture was determined through optimization plot. This work has demonstrated that acceptable ‘fufu’ with moderate protein and carbohydrate could be successfully produced using composite flours of sorghum, millet and African yam bean.


2021 ◽  
pp. 13-22
Author(s):  
Ihemeje Austin ◽  
Akujobi, Ijeoma Chidinma ◽  
Kabuo Canice Obioma Obinna

Objective: The study aimed at production and quality evaluation of composite flours and cookies from cassava (Maniholt esculenta) -grey speckled palapye cowpea (Vigna sinensis). Methods: Flour was respectively produced from cassava and palapye cowpea. The flours of cassava and palapye cowpea were mixed in the ratios of 100:0, 90:10, 80:20 and 70:30 respectively before being analyzed for antinutrient and functional properties. Cookies were produced from the flours and then evaluated for their respective nutrient and organoleptic attributes.  Data was analysed using using spss version 21.0. Results: The anti-nutrient concentration ranged from 0.83 to 1.25% (phytate), 0.07 to 0.19% (phenol), 0.12 to 0.17% (tannin), 0.09 to 0.21 Tiu/mg (trypsin inhibitor) and 0.28 to 0.88 mg/kg (hydrogen cyanide). The functional properties were found to be within 0.47 to 0.58 g/ml (bulk density), 1.62 to 2.04 g/g (capacity), 1.58% to 2.06 g/g (oil absorption capacity), 1.26 to 1.74 g/ml (swelling capacity) and 10.47 to 14.86% (foaming capacity). Proximate composition of the cookies samples showed 9.43 to 10.77% (moisture), 2.03 to 6.88% (protein), 1.03 to 1.91% (fat), 1.24 to 2.55% (ash), 3.22 to 4.26% (fibre) and 76.01 to 80.82% (carbohydrate).  The sensory scores of the cookies ranged from 6.2 to 7.3 on the hedonic scale. Conclusion: The cassava-grey speckled cowpea flour proved satisfactory in cookies production and could also serve well in formulations for other food products.


Author(s):  
Mia Marchini ◽  
Alessandra Marti ◽  
Maria Grazia Tuccio ◽  
Elena Bocchi ◽  
Eleonora Carini
Keyword(s):  

2021 ◽  
Vol 5 ◽  
Author(s):  
Haile Tesfaye Duguma ◽  
Sirawdink Fikreyesus Forsido ◽  
Tefera Belachew ◽  
Oliver Hensel

Background: Development of complementary foods by mixing plant-based (cereals, pulses, oilseeds, and others) ingredients and employing various processing techniques is widely reported. However, information on comparison of anti-nutritional factors and functional properties of extruded and unextruded complementary flours made from a multi-mix is limited. In this regard, this study aims to investigate the influence of extrusion cooking on anti-nutritional and functional properties of newly developed extruded oats, soybean, linseed, and premix composite complementary flours.Methods: Thirteen different blending ratios of oats, soybean, linseed, and premix were generated using a constrained D-optimal design of the experiment. Each of the 13 blends was divided into two groups: extrusion cooked and unextruded composite flour sample. Anti-nutritional and functional properties were determined using standard methods for both composite flours. ANOVA was used to determine if there was a significant difference for extruded and unextruded composite flours and paired t-tests were used to check variation between extruded and unextruded.Results: The phytate content of the extruded and unextruded composite flours was 158.93–191.33 mg/100 g and 175.06–203.10 mg/100 g, respectively, whereas the tannin content of the extruded and unextruded composite flours was 8.4–22.89 mg/100 g and 23.67–36.97 mg/100 g, respectively. There was a statistically significant (p &lt; 0.05) difference among the extruded composite flours in terms of phytate and condensed tannin content. Paired t-test has indicated a significant (p &lt; 0.05) difference between extruded and unextruded composite flours for phytate and tannin. Water absorption capacity and bulk density have shown a significant (p &lt; 0.05) difference among extruded and unextruded composite flours. An increase in the proportion of soybean and linseed flour was associated with an increase in phytate, tannin, and water absorption capacity of composite flours. However, bulk density was increased with an increasing proportion of oat in the blend.Conclusion: The findings revealed that extrusion cooking significantly reduced phytate and condensed tannin content and improved the functional properties of the composite complementary food flour. Further investigation is needed on other anti-nutritional factors that are not included in this report.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Mitaigiri Taffreeda Banua ◽  
Jaspreet Kaura ◽  
Vishesh Bhadariya ◽  
Jyoti Singh ◽  
Kartik Sharma

Composite flour is a combination of only either various grains or both various grains and vegetables it is a storehouse of various nutrients like vitamins, minerals, antioxidants, and dietary fiber. In the present day, there has been an increased demand for nutritional and health-based variants of food due to changes in lifestyle and socio-economic status. There is no surprise in saying that people are seeing the food being consumed on a day-to-day basis as a status symbol and are striving to get better quality of health through the food they consume and are ready to spend huge amounts of money on the products which are so-called healthy and are being commercially marketed in a smart manner capturing both peoples mind and attention knowing to bring down various lifestyle disorders like Diabetes, Cardiovascular diseases, Hypertension, Cancer, Atherosclerosis, Ischemic stroke, Obesity, Coeliac disease, Alzheimer’s and many other diseases and disorders when consumed frequently in long run. The foods which fall under such category especially are composite flours and ready-to-cook mixes occupying more than 70% of both the food and health industry today being recommended by most of the nutritional experts. This paper is a review-based article collected from various papers focusing on role of consumption of composite flours in management of lifestyle disorders such as diabetes, hypertension, cancer etc.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2150
Author(s):  
Ionica Coţovanu ◽  
Mădălina Ungureanu-Iuga ◽  
Silvia Mironeasa

The present study aimed to investigate the influence of quinoa fractions (QF) on the chemical components of wheat flour (WF), dough rheological properties, and baking performance of wheat bread. The microstructure and molecular conformations of QF fractions were dependent to the particle size. The protein, lipids, and ash contents of composite flours increased with the increase of QF addition level, while particle size (PS) decreased these parameters as follows: Medium ˃ Small ˃ Large, the values being higher compared with the control (WF). QF addition raised dough tenacity from 86.33 to 117.00 mm H2O, except for the small fraction, and decreased the extensibility from 94.00 to 26.00 mm, while PS determined an irregular trend. The highest QF addition levels and PS led to the highest dough viscoelastic moduli (55,420 Pa for QL_20, 65245 Pa for QM_20 and 48305 Pa for QS_20, respectively). Gradual increase of QF determined dough hardness increase and adhesiveness decrease. Bread firmness, springiness, and gumminess rises were proportional to the addition level. The volume, elasticity, and porosity of bread decreased with QF addition. Flour and bread crust and crumb color parameters were also influenced by QF addition with different PS.


2021 ◽  
pp. 63-77
Author(s):  
T. A. Dendegh ◽  
B. M. Yelmi ◽  
R. A. Dendegh

Quality attributes of stiff porridges prepared from Pearl millet and African Yam Bean (AYB) flour blends were studied. Various ratios such as A (100% pearl millet), B (90:10), C (80:20), D (70:30), E (60:40) and F (50:50) of pearl millet and African Yam Bean (AYB) composite flours were mixed and analyzed for functional, proximate composition, mineral elements and sensory properties. The blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of African Yam Bean with Pearl Millet led to increases in moisture (24.29 to 37.50%) protein (10.90 to 19.70%), fibre (1.30 to 2.00%), Ash (0.43 to 0.55%) and fat (3.80 to 5.20%) while the carbohydrate content of the blends decreased (from 62.07 to 39.85%) respectively. Functional properties such as bulk density decreased with increase in AYB from (1.80 to 0.72 g/ml, swelling index also increases from 0.75 to 0.56 g/ml, water absorption capacity decreases from 2.20 to 2.64 g/ml) and Least Gelation Concentration (6%). The sensory attributes of stiff porridges were not adversely affected by African Yam Bean flour. Therefore, it should be possible to incorporate up to 50% of legumes such as African Yam Bean with Pearl Millet in the preparation of stiff porridges.


Sign in / Sign up

Export Citation Format

Share Document