striated muscle
Recently Published Documents


TOTAL DOCUMENTS

2795
(FIVE YEARS 264)

H-INDEX

108
(FIVE YEARS 9)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 109
Author(s):  
Stefano Perni

Contraction of striated muscle is triggered by a massive release of calcium from the sarcoplasmic reticulum (SR) into the cytoplasm. This intracellular calcium release is initiated by membrane depolarization, which is sensed by voltage-gated calcium channels CaV1.1 (in skeletal muscle) and CaV1.2 (in cardiac muscle) in the plasma membrane (PM), which in turn activate the calcium-releasing channel ryanodine receptor (RyR) embedded in the SR membrane. This cross-communication between channels in the PM and in the SR happens at specialized regions, the SR-PM junctions, where these two compartments come in close proximity. Junctophilin1 and Junctophilin2 are responsible for the formation and stabilization of SR-PM junctions in striated muscle and actively participate in the recruitment of the two essential players in intracellular calcium release, CaV and RyR. This short review focuses on the roles of junctophilins1 and 2 in the formation and organization of SR-PM junctions in skeletal and cardiac muscle and on the functional consequences of the absence or malfunction of these proteins in striated muscle in light of recently published data and recent advancements in protein structure prediction.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Arkadiusz Kajdasz ◽  
Daria Niewiadomska ◽  
Michal Sekrecki ◽  
Krzysztof Sobczak

AbstractCUG-binding protein, ELAV-like Family Member 1 (CELF1) plays an important role during the development of different tissues, such as striated muscle and brain tissue. CELF1 is an RNA-binding protein that regulates RNA metabolism processes, e.g., alternative splicing, and antagonizes other RNA-binding proteins, such as Muscleblind-like proteins (MBNLs). Abnormal activity of both classes of proteins plays a crucial role in the pathogenesis of myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults. In this work, we show that alternative splicing of exons forming both the 5′ and 3′ untranslated regions (UTRs) of CELF1 mRNA is efficiently regulated during development and tissue differentiation and is disrupted in skeletal muscles in the context of DM1. Alternative splicing of the CELF1 5′UTR leads to translation of two potential protein isoforms that differ in the lengths of their N-terminal domains. We also show that the MBNL and CELF proteins regulate the distribution of mRNA splicing isoforms with different 5′UTRs and 3′UTRs and affect the CELF1 expression by changing its sensitivity to specific microRNAs or RNA-binding proteins. Together, our findings show the existence of different mechanisms of regulation of CELF1 expression through the distribution of various 5′ and 3′ UTR isoforms within CELF1 mRNA.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Raniah Al Amri ◽  
Danielle V. De Stefano ◽  
Qian Wang ◽  
Cláudia M. Salgado ◽  
Ana M. Gómez ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Karla G Espinosa ◽  
Salma Geissah ◽  
Linda Groom ◽  
Jonathan Volpatti ◽  
Ian C Scott ◽  
...  

Centronuclear myopathy (CNM) is a congenital neuromuscular disorder caused by pathogenic variation in genes associated with membrane trafficking and excitation-contraction coupling (ECC). Bi-allelic autosomal recessive mutations in striated muscle enriched protein kinase (SPEG) account for a subset of CNM patients. Previous research has been limited by the perinatal lethality of Speg knockout mice. Thus, the precise biological role of SPEG in skeletal muscle remains unknown. To address this issue, we generated zebrafish spega, spegb, and spega/spegb (speg-DKO) mutant lines. We demonstrate that speg-DKO zebrafish faithfully recapitulate multiple phenotypes associated with human CNM, including disruption of the ECC protein machinery, dysregulation of calcium homeostasis during ECC, and impairment of muscle performance. Taking advantage of the availability of zebrafish models of multiple CNM genetic subtypes, we compared novel and known disease markers in speg-DKO with mtm1-KO and DNM2-S619L transgenic zebrafish. We observed desmin (DES) accumulation common to all CNM subtypes, and Dnm2 upregulation in muscle of both speg-DKO and mtm1-KO zebrafish. In all, we establish a new model of SPEG-related CNM, and identify abnormalities in this model suitable for defining disease pathomechanisms and evaluating potential therapies.


Epigenomes ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Kenneth C. Ehrlich ◽  
Hong-Wen Deng ◽  
Melanie Ehrlich

Striated muscle has especially large energy demands. We identified 97 genes preferentially expressed in skeletal muscle and heart, but not in aorta, and found significant enrichment for mitochondrial associations among them. We compared the epigenomic and transcriptomic profiles of the 27 genes associated with striated muscle and mitochondria. Many showed strong correlations between their tissue-specific transcription levels, and their tissue-specific promoter, enhancer, or open chromatin as well as their DNA hypomethylation. Their striated muscle-specific enhancer chromatin was inside, upstream, or downstream of the gene, throughout much of the gene as a super-enhancer (CKMT2, SLC25A4, and ACO2), or even overlapping a neighboring gene (COX6A2, COX7A1, and COQ10A). Surprisingly, the 3′ end of the 1.38 Mb PRKN (PARK2) gene (involved in mitophagy and linked to juvenile Parkinson’s disease) displayed skeletal muscle/myoblast-specific enhancer chromatin, a myoblast-specific antisense RNA, as well as brain-specific enhancer chromatin. We also found novel tissue-specific RNAs in brain and embryonic stem cells within PPARGC1A (PGC-1α), which encodes a master transcriptional coregulator for mitochondrial formation and metabolism. The tissue specificity of this gene’s four alternative promoters, including a muscle-associated promoter, correlated with nearby enhancer chromatin and open chromatin. Our in-depth epigenetic examination of these genes revealed previously undescribed tissue-specific enhancer chromatin, intragenic promoters, regions of DNA hypomethylation, and intragenic noncoding RNAs that give new insights into transcription control for this medically important set of genes.


Author(s):  
Yu. N. Yurgel ◽  
B. Ya. Alekseev ◽  
E. I. Kopyltsov ◽  
O. V. Leonov ◽  
I. A. Sikhvardt ◽  
...  

Background Intraoperative rectal injury in prostatectomy patients is an uncommon but severe complication. Particular attention is paid to improving the results of healing damage to the anterior rectal wall during prostatectomy.Objective To study the morphological features of the parietal pelvic fascia and the rectal wall to substantiate the possibility of the formation of fascial duplication in the elimination of damage to the anterior rectal wall during prostatectomy.Material and Methods The authors carried out an intravital morphological analysis of the parietal pelvic fascia covering the levator rectum muscle and the anterior rectal wall in 10 men.Results The parietal pelvic fascia contains more powerful bundles of collagen fibers, which in certain areas are partially woven into the fibers of striated muscle tissue. The adventitia of the rectum is characterized by a looser arrangement of the interacting components of the formed connective and smooth muscle tissue. In the studied formations of the small pelvis, the thickness of collagen fibers separately and in the composition of bundles, as well as the cells of the differon and each fiber separately did not differ, which indicated the identity of their tinctorial properties in the compared zones.Conclusion Morphological analysis showed that when juxtaposing and touching the edges of the healing area of the surgical wound without tension, a stable and continuous scar of the fascial duplication is formed, which ensures reliable fusion of the stitched anatomical structures.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Corey L. Anderson ◽  
Emma R. Langer ◽  
Timothy C. Routes ◽  
Seamus F. McWilliams ◽  
Igor Bereslavskyy ◽  
...  

AbstractHundreds of LMNA variants have been associated with several distinct disease phenotypes. However, genotype–phenotype relationships remain largely undefined and the impact for most variants remains unknown. We performed a functional analysis for 178 variants across five structural domains using two different overexpression models. We found that lamin A aggregation is a major determinant for skeletal and cardiac laminopathies. An in vitro solubility assay shows that aggregation-prone variants in the immunoglobulin-like domain correlate with domain destabilization. Finally, we demonstrate that myopathic-associated LMNA variants show aggregation patterns in induced pluripotent stem cell derived-cardiomyocytes (iPSC-CMs) in contrast to non-myopathic LMNA variants. Our data-driven approach (1) reveals that striated muscle laminopathies are predominantly protein misfolding diseases, (2) demonstrates an iPSC-CM experimental platform for characterizing laminopathic variants in human cardiomyocytes, and (3) supports a functional assay to aid in assessing pathogenicity for myopathic variants of uncertain significance.


2021 ◽  
Vol 8 (12) ◽  
pp. 160
Author(s):  
Lena Gruscheski ◽  
Thomas Brand

The Popeye domain-containing (POPDC) gene family, consisting of Popdc1 (also known as Bves), Popdc2, and Popdc3, encodes transmembrane proteins abundantly expressed in striated muscle. POPDC proteins have recently been identified as cAMP effector proteins and have been proposed to be part of the protein network involved in cAMP signaling. However, their exact biochemical activity is presently poorly understood. Loss-of-function mutations in animal models causes abnormalities in skeletal muscle regeneration, conduction, and heart rate adaptation after stress. Likewise, patients carrying missense or nonsense mutations in POPDC genes have been associated with cardiac arrhythmias and limb-girdle muscular dystrophy. In this review, we introduce the POPDC protein family, and describe their structure function, and role in cAMP signaling. Furthermore, the pathological phenotypes observed in zebrafish and mouse models and the clinical and molecular pathologies in patients carrying POPDC mutations are described.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009908
Author(s):  
Tie-Bo Zeng ◽  
Nicholas Pierce ◽  
Ji Liao ◽  
Purnima Singh ◽  
Kin Lau ◽  
...  

EHMT2 is the main euchromatic H3K9 methyltransferase. Embryos with zygotic, or maternal mutation in the Ehmt2 gene exhibit variable developmental delay. To understand how EHMT2 prevents variable developmental delay we performed RNA sequencing of mutant and somite stage-matched normal embryos at 8.5–9.5 days of gestation. Using four-way comparisons between delayed and normal embryos we clarified what it takes to be normal and what it takes to develop. We identified differentially expressed genes, for example Hox genes that simply reflected the difference in developmental progression of wild type and the delayed mutant uterus-mate embryos. By comparing wild type and zygotic mutant embryos along the same developmental window we detected a role of EHMT2 in suppressing variation in the transcriptional switches. We identified transcription changes where precise switching during development occurred only in the normal but not in the mutant embryo. At the 6-somite stage, gastrulation-specific genes were not precisely switched off in the Ehmt2−/− zygotic mutant embryos, while genes involved in organ growth, connective tissue development, striated muscle development, muscle differentiation, and cartilage development were not precisely switched on. The Ehmt2mat−/+ maternal mutant embryos displayed high transcriptional variation consistent with their variable survival. Variable derepression of transcripts occurred dominantly in the maternally inherited allele. Transcription was normal in the parental haploinsufficient wild type embryos despite their delay, consistent with their good prospects. Global profiling of transposable elements revealed EHMT2 targeted DNA methylation and suppression at LTR repeats, mostly ERVKs. In Ehmt2−/− embryos, transcription over very long distances initiated from such misregulated ‘driver’ ERVK repeats, encompassing a multitude of misexpressed ‘passenger’ repeats. In summary, EHMT2 reduced transcriptional variation of developmental switch genes and developmentally switching repeat elements at the six-somite stage embryos. These findings establish EHMT2 as a suppressor of transcriptional and developmental variation at the transition between gastrulation and organ specification.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1166
Author(s):  
Jack V. Greiner ◽  
Thomas Glonek

Crystalline lens and striated muscle exist at opposite ends of the metabolic spectrum. Lens is a metabolically quiescent tissue, whereas striated muscle is a mechanically dynamic tissue with high-energy requirements, yet both tissues contain millimolar levels of ATP (>2.3 mM), far exceeding their underlying metabolic needs. We explored intracellular concentrations of ATP across multiple cells, tissues, species, and domains to provide context for interpreting lens/striated muscle data. Our database revealed that high intracellular ATP concentrations are ubiquitous across diverse life forms including species existing from the Precambrian Era, suggesting an ancient highly conserved role for ATP, independent of its widely accepted view as primarily “metabolic currency”. Our findings reinforce suggestions that the primordial function of ATP was non-metabolic in nature, serving instead to prevent protein aggregation.


Sign in / Sign up

Export Citation Format

Share Document