terrain models
Recently Published Documents


TOTAL DOCUMENTS

571
(FIVE YEARS 147)

H-INDEX

38
(FIVE YEARS 6)

Quaternary ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Matthew D. Howland ◽  
Anthony Tamberino ◽  
Ioannis Liritzis ◽  
Thomas E. Levy

This paper tests the suitability of automated point cloud classification tools provided by the popular image-based modeling (IBM) software package Agisoft Metashape for the generation of digital terrain models (DTMs) at moderately-vegetated archaeological sites. DTMs are often required for various forms of archaeological mapping and analysis. The suite of tools provided by Agisoft are relatively user-friendly as compared to many point cloud classification algorithms and do not require the use of additional software. Based on a case study from the Mycenaean site of Kastrouli, Greece, the mostly-automated, geometric classification tool “Classify Ground Points” provides the best results and produces a quality DTM that is sufficient for mapping and analysis. Each of the methods tested in this paper can likely be improved through manual editing of point cloud classification.


Author(s):  
Augusto Pérez-Alberti

There are several coastal classifications. Most of them have been elaborated worldwide using tectonic, climatic, topographic, or oceanographic criteria. Other classifications have been generated on a larger scale and focused on classifying the coastal forms, as cliffs, beaches, estuaries, lagoons, or dune complexes in different places.This project analyzes the types of coastlines, understanding as such each sector that presents certain topographic conditions marked by the elevation and slope, and that was modeled on a concrete type of rock in a specific climatic and marine environment. This paper describes a methodological approach for a detailed scale classification. This approach based on the delimitation of the different coastal systems, exemplified in cliffs and boulder beaches, sandy beaches, and dunes. In this case the shore platforms, marshes and lagoons have not been considered for the technical problems derived from the LiDAR data source, from which the 2 m spatial resolution digital terrain models (DTM) are derived.The first step in the classification was a manual delimitation combining DTMs and orthophotographs. Subsequently, other typification has been carried out through the automatic creation of Coastal Topographic Units (CTU). This index is the combination of two variables: coastal elevation and slope. The possible integration of others, such as orientation or lithology, is possible, but generate a very high number of units and make it difficult to interpret. For this reason, this study did not consider more variables.In this project 30 CTUs was generated, and then selecting only those that appear in the cliffs, boulder beaches, sandy beaches, and coastal dunes sectors. The possibility of viewing one or several CTUs in any sector of the coast allows to know more accurately the conditions of each sector and these categories could be improve the coastal management plans.


2022 ◽  
Vol 14 (1) ◽  
pp. 227
Author(s):  
Mahmoud Omer Mahmoud Awadallah ◽  
Ana Juárez ◽  
Knut Alfredsen

Remotely sensed LiDAR data has allowed for more accurate flood map generation through hydraulic simulations. Topographic and bathymetric LiDARs are the two types of LiDAR used, of which the former cannot penetrate water bodies while the latter can. Usually, the topographic LiDAR is more available than bathymetric LiDAR, and it is, therefore, a very interesting data source for flood mapping. In this study, we made comparisons between flood inundation maps from several flood scenarios generated by the HEC-RAS 2D model for 11 sites in Norway using both bathymetric and topographic terrain models. The main objective is to investigate the accuracy of the flood inundations generated from the plain topographic LiDAR, the links of the inaccuracies with geomorphic features, and the potential of using corrections for missing underwater geometry in the topographic LiDAR data to improve accuracy. The results show that the difference in inundation between topographic and bathymetric LiDAR models decreases with increasing the flood size, and this trend was found to be correlated with the amount of protection embankments in the reach. In reaches where considerable embankments are constructed, the difference between the inundations increases until the embankments are overtopped and then returns to the general trend. In addition, the magnitude of the inundation error was found to correlate positively with the sinuosity and embankment coverage and negatively with the angle of the bank. Corrections were conducted by modifying the flood discharge based on the flight discharge of the topographic LiDAR or by correcting the topographic LiDAR terrain based on the volume of the flight discharge, where the latter method generally gave better improvements.


2021 ◽  
Vol 14 (1) ◽  
pp. 154
Author(s):  
Xuying Liu ◽  
Xiao Cheng ◽  
Qi Liang ◽  
Teng Li ◽  
Fukai Peng ◽  
...  

Iceberg D28, a giant tabular iceberg that calved from Amery Ice Shelf in September 2019, grounded off Kemp Coast, East Antarctica, from August to September of 2020. The motion of the iceberg is characterized herein by time-series images captured by synthetic aperture radar (SAR) on Sentinel-1 and the moderate resolution imaging spectroradiometer (MODIS) boarded on Terra from 6 August to 15 September 2020. The thickness of iceberg D28 was estimated by utilizing data from altimeters on Cryosat-2, Sentinel-3, and ICESat-2. By using the iceberg draft and grounding point locations inferred from its motion, the maximum water depths at grounding points were determined, varying from 221.72 ± 21.77 m to 269.42 ± 25.66 m. The largest disagreements in seabed elevation inferred from the grounded iceberg and terrain models from the Bedmap2 and BedMachine datasets were over 570 m and 350 m, respectively, indicating a more complicated submarine topography in the study area than that presented by the existing seabed terrain models. Wind and sea water velocities from reanalysis products imply that the driving force from sea water is a more dominant factor than the wind in propelling iceberg D28 during its grounding, which is consistent with previous findings on iceberg dynamics.


2021 ◽  
Vol 13 (24) ◽  
pp. 5097
Author(s):  
Michael T. Bland ◽  
Randolph L. Kirk ◽  
Donna M. Galuszka ◽  
David P. Mayer ◽  
Ross A. Beyer ◽  
...  

Jupiter’s moon Europa harbors one of the most likely environments for extant extraterrestrial life. Determining whether Europa is truly habitable requires understanding the structure and thickness of its ice shell, including the existence of perched water or brines. Stereo-derived topography from images acquired by NASA Galileo’s Solid State Imager (SSI) of Europa are often used as a constraint on ice shell structure and heat flow, but the uncertainty in such topography has, to date, not been rigorously assessed. To evaluate the current uncertainty in Europa’s topography we generated and compared digital terrain models (DTMs) of Europa from SSI images using both the open-source Ames Stereo Pipeline (ASP) software and the commercial SOCET SET® software. After first describing the criteria for assessing stereo quality in detail, we qualitatively and quantitatively describe both the horizontal resolution and vertical precision of the DTMs. We find that the horizontal resolution of the SOCET SET® DTMs is typically 8–11× the root mean square (RMS) pixel scale of the images, whereas the resolution of the ASP DTMs is 9–13× the maximum pixel scale of the images. We calculate the RMS difference between the ASP and SOCET SET® DTMs as a proxy for the expected vertical precision (EP), which is a function of the matching accuracy and stereo geometry. We consistently find that the matching accuracy is ~0.5 pixels, which is larger than well-established “rules of thumb” that state that the matching accuracy is 0.2–0.3 pixels. The true EP is therefore ~1.7× larger than might otherwise be assumed. In most cases, DTM errors are approximately normally distributed, and errors that are several times the derived EP occur as expected. However, in two DTMs, larger errors (differences) occur and correlate with real topography. These differences primarily result from manual editing of the SOCET SET® DTMs. The product of the DTM error and the resolution is typically 4–8 pixel2 if calculated using the RMS image scale for SOCET SET® DTMs and the maximum images scale for the ASP DTMs, which is consistent with recent work using martian data sets and suggests that the relationship applies more broadly. We evaluate how ASP parameters affect DTM quality and find that using a smaller subpixel refinement kernel results in DTMs with smaller (better) resolution but, in some cases, larger gaps, which are sometimes reduced by increasing the size of the correlation kernel. We conclude that users of ASP should always systematically evaluate the choice of parameters for a given dataset.


2021 ◽  
Vol 61 (2) ◽  
pp. 187-206
Author(s):  
Marko Milošević ◽  
Dragoljub Štrbac ◽  
Jelena Ćalić ◽  
Milan Radovanović

The paper presents and discusses the landslide research procedure related to the topography before and after its occurrence, using the comparative analysis of two medium-resolution digital terrain models. The case study is the Jovac mega-landslide—the largest landslide to occur in Serbia in the last 100 years, active for three days in February 1977. The indicators used to determine the volume and movement mechanism were the spatial distribution of elevation differences within the two digital terrain models (DTM), and the analysis of geomorphological features before the landslide. The obtained elevation differences allowed the definition of the approximate landslide volume: 11.6 × 106 m3. All the data obtained indicate that the movement mechanism falls into the category of earthflow.


2021 ◽  
Vol 937 (4) ◽  
pp. 042067
Author(s):  
O Germak ◽  
O Gugueva ◽  
N Kalacheva

Abstract At any stage of urban planning activities, it may be necessary to plan the territory. The territory planning project can be created on topographic plans of a scale of 1: 2000. Modern needs for cadastre maintenance, land management, and design of territories require high quality topographic material obtained in almost real time with high image resolution. This problem is effectively solved by aerial photography from unmanned aerial vehicles (UAVs). Airborne laser scanning allows you to survey difficult terrain and large areas. To clarify the position of some terrain objects, a GNSS survey in RTK mode was used. The combined survey method provides the necessary accuracy of surveying the situation and the terrain, the measurement accuracy corresponds to the possibility of creating engineering-topographic plans at a scale of 1: 2000. In the course of the work, engineering digital terrain models and orthophotomaps were formed. Based on the data obtained, a digital topographic plan of 1: 2000 scale was compiled.


2021 ◽  
Vol 13 (22) ◽  
pp. 4510
Author(s):  
Klemen Medved ◽  
Oleg Odalović ◽  
Božo Koler

The existing Bouguer anomaly map, which covers the territory of the Republic of Slovenia is a few decades old. Since then, quite a few new gravimetric measurements (data) for the territory of Slovenia as well as high quality digital terrain models that are needed for creating such a map have been made available. The methodology and standards for creating gravity anomaly maps are also changing. Thus, the national Bouguer anomaly map was updated. There were some gross errors detected in the set of old gravimetric data. Additionally, the influence of new updated gravimetric data was analyzed. The comparison of the various maps and the analysis of the influence of input gravimetric data indicates that the new gravimetric data of Slovenia has a significant influence on the creation of the gravimetric anomaly maps for Slovenia (even over 30 mGals at some points).


2021 ◽  
Vol 5 (ISS) ◽  
pp. 1-20
Author(s):  
Bridger Herman ◽  
Maxwell Omdal ◽  
Stephanie Zeller ◽  
Clara A. Richter ◽  
Francesca Samsel ◽  
...  

Data physicalizations (3D printed terrain models, anatomical scans, or even abstract data) can naturally engage both the visual and haptic senses in ways that are difficult or impossible to do with traditional planar touch screens and even immersive digital displays. Yet, the rigid 3D physicalizations produced with today's most common 3D printers are fundamentally limited for data exploration and querying tasks that require dynamic input (e.g., touch sensing) and output (e.g., animation), functions that are easily handled with digital displays. We introduce a novel style of hybrid virtual + physical visualization designed specifically to support interactive data exploration tasks. Working toward a "best of both worlds" solution, our approach fuses immersive AR, physical 3D data printouts, and touch sensing through the physicalization. We demonstrate that this solution can support three of the most common spatial data querying interactions used in scientific visualization (streamline seeding, dynamic cutting places, and world-in-miniature visualization). Finally, we present quantitative performance data and describe a first application to exploratory visualization of an actively studied supercomputer climate simulation data with feedback from domain scientists.


2021 ◽  
Vol 906 (1) ◽  
pp. 012075
Author(s):  
Dana Sitanyiova ◽  
Dasa Bacova ◽  
Robert Sasik ◽  
Frantisek Malik

Abstract Within the Digital Terrain Models (DTM) processing and consequently qualitative and quantitative analysis, it is possible to gain a credible imagination of real terrain shape. In order to obtain an appropriate DTM, it is necessary to decrease the influence of the gross errors that have negative effects on the final DTM. These gross errors may degrade and in the worst case also ruin the calculations and the final outputs. The gross errors have a greater impact and are harder to define in complicated terrain and pointing out these types of errors depends on the editor’s experiences and terrain knowledge.


Sign in / Sign up

Export Citation Format

Share Document