plastid dna
Recently Published Documents


TOTAL DOCUMENTS

526
(FIVE YEARS 108)

H-INDEX

50
(FIVE YEARS 4)

Author(s):  
Julita Minasiewicz ◽  
Emilia Krawczyk ◽  
Joanna Znaniecka ◽  
Lucie Vincenot ◽  
Ekaterina Zheleznaya ◽  
...  

AbstractSome plants abandoned photosynthesis and developed full dependency on fungi for nutrition. Most of the so-called mycoheterotrophic plants exhibit high specificity towards their fungal partners. We tested whether natural rarity of mycoheterotrophic plants and usual small and fluctuating population size make their populations more prone to genetic differentiation caused by restricted gene flow and/or genetic drift. We also tested whether these genetic characteristics might in turn shape divergent fungal preferences. We studied the mycoheterotrophic orchid Epipogium aphyllum, addressing the joint issues of genetic structure of its populations over Europe and possible consequences for mycorrhizal specificity within the associated fungal taxa. Out of 27 sampled E. aphyllum populations, nine were included for genetic diversity assessment using nine nuclear microsatellites and plastid DNA. Population genetic structure was inferred based on the total number of populations. Individuals from 17 locations were included into analysis of genetic identity of mycorrhizal fungi of E. aphyllum based on barcoding by nuclear ribosomal DNA. Epipogium aphyllum populations revealed high genetic diversity (uHe = 0.562) and low genetic differentiation over vast distances (FST = 0.106 for nuclear microsatellites and FST = 0.156 for plastid DNA). Bayesian clustering analyses identified only two genetic clusters, with a high degree of admixture. Epipogium aphyllum genets arise from panmixia and display locally variable, but relatively high production of ramets, as shown by a low value of rarefied genotypic richness (Rr = 0.265). Epipogium aphyllum genotype control over partner selection was negligible as (1) we found ramets from a single genetic individual associated with up to 68% of the known Inocybe spp. associating with the plant species, (2) and partner identity did not show any geographic structure. The absence of mosaicism in the mycorrhizal specificity over Europe may be linked to preferential allogamous habit of E. aphyllum and significant gene flow, which tend to promote host generalism.


Phytotaxa ◽  
2021 ◽  
Vol 528 (4) ◽  
pp. 247-254
Author(s):  
ZHUANG ZHOU ◽  
PENG-YU WU ◽  
YA-JUN LIN ◽  
ZHUANG ZHAO ◽  
XIONG-DE TU ◽  
...  

A new orchid species, Bulbophyllum versicolor (Malaxideae, Epidendroideae, Orchidaceae), from Malipo, Yunnan, China, is described and illustrated here. Detailed morphological study indicates that B. versicolor is similar to B. japonicum, but it differs in the shape and size of leaf and flower and flower colour. Molecular analyses based on the nuclear ribosomal DNA (nrITS) and plastid DNA (matK, atpI-atpH and trnL-F) reveal that B. versicolor is a new species and genetically similar to B. japonicum.


2021 ◽  
Vol 78 (2) ◽  
pp. e116
Author(s):  
Mike Thiv ◽  
Manuela Gouveia ◽  
Miguel Menezes de Sequeira

Macaronesian laurel forests harbour many herbs and laurophyllous trees with Mediterranean/European or Macaronesian affinities. Traditionally, the origin of these taxa has been explained by the relict hypothesis interpreting these taxa as relics of formerly widespread laurel forests in the European continent and the Mediterranean. We analysed the phylogenetic relationships of the Madeiran laurel forest endemic Goodyera macrophylla (Orchidaceae) using sequences from the nuclear ribosomal DNA Internal Transcribed Spacers (ITS) and plastid DNA regions. The results were incongruent, either the two Central American G. brachyceras and G. striata (ITS) or the North American G. oblongifolia (plastid DNA) were sister group to G. macrophylla. Nonetheless, biogeographic analyses indicated an American origin of this nemoral laurel forest plant in the two data sets. Molecular clock analyses suggest a colonisation of Madeira in the span of the upper Miocene/lower Pliocene to the Pleistocene. Although the relict hypothesis cannot be ruled out by our data when assuming extinction events on the European and northern African mainland, dispersal from Central or North America to the archipelago of Madeira is a much more likely explanation of the data.


Turczaninowia ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 73-83
Author(s):  
Tatyana E. Kramina ◽  
Ilja G. Meschersky ◽  
Alina V. Fedorova ◽  
Natalia V. Vasilieva ◽  
Nina Yu. Stepanova ◽  
...  

We have studied several samples from Lotus corniculatus s. l. and L. zhegulensis populations with the use of SSR and sequenced nuclear (ITS) and plastid (atpB-rbcL, ndhC-trnV, rpl32-trnL(UAG), trnH-psbA, trnL-trnF) markers. We analysed 9 local populations from the Volga River valley ranging from Ulyanovsk in the north to Volgograd in the south, as well as two local populations from Moscow and Lipetsk Provinces. Analyses of SSR markers using the STRUCRURE program divided the sample into three genetic clusters. Populations from Moscow and Lipetsk Provinces, and three local populations from the ‘locus classicus’ location of L. zhegulensis in Samara Province appeared to be the most genetically differentiated while all the other populations were variously genetically admixed. Low pairwise Fst values indicate low genetic differentiation of Lotus populations and the intraspecific nature of the revealed diversity. The nuclear and plastid DNA sequences analyzed yielded little information. Substitutions and indels revealed were mostly autapomorphies characteristic of separate specimens or small groups of specimens but not of populations. Our study enables to firmly conclude that Lotus populations from the right bank of the Volga River in vicinity of Zhiguli upland described as L. zhegulensis are weakly genetically differentiated from other populations of Lotus corniculatus s. l. and, hence, cannot be regarded as a separate species.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2699
Author(s):  
Joan Pere Pascual-Díaz ◽  
Sònia Garcia ◽  
Daniel Vitales

Plastid genomes are in general highly conserved given their slow evolutionary rate, and thus large changes in their structure are unusual. However, when specific rearrangements are present, they are often phylogenetically informative. Asteraceae is a highly diverse family whose evolution is long driven by polyploidy (up to 48x) and hybridization, both processes usually complicating systematic inferences. In this study, we generated one of the most comprehensive plastome-based phylogenies of family Asteraceae, providing information about the structure, genetic diversity and repeat composition of these sequences. By comparing the whole-plastome sequences obtained, we confirmed the double inversion located in the long single-copy region, for most of the species analyzed (with the exception of basal tribes), a well-known feature for Asteraceae plastomes. We also showed that genome size, gene order and gene content are highly conserved along the family. However, species representative of the basal subfamily Barnadesioideae—as well as in the sister family Calyceraceae—lack the pseudogene rps19 located in one inverted repeat. The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, were overall consistent with the general consensus for the family’s phylogeny while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leo Bellin ◽  
Vanessa Scherer ◽  
Eva Dörfer ◽  
Anne Lau ◽  
Alexandre Magno Vicente ◽  
...  

CTP synthases (CTPS) comprise a protein family of the five members CTPS1-CTPS5 in Arabidopsis, all located in the cytosol. Specifically, downregulation of CTPS2 by amiRNA technology results in plants with defects in chlorophyll accumulation and photosynthetic performance early in development. CTP and its deoxy form dCTP are present at low levels in developing seedlings. Thus, under conditions of fast proliferation, the synthesis of CTP (dCTP) can become a limiting factor for RNA and DNA synthesis. The higher sensitivity of ami-CTPS2 lines toward the DNA-Gyrase inhibitor ciprofloxacin, together with reduced plastid DNA copy number and 16S and 23S chloroplast ribosomal RNA support this view. High expression and proposed beneficial biochemical features render CTPS2 the most important isoform for early seedling development. In addition, CTPS2 was identified as an essential enzyme in embryo development before, as knock-out mutants were embryo lethal. In line with this, ami-CTPS2 lines also exhibited reduced seed numbers per plant.


2021 ◽  
Vol 22 (22) ◽  
pp. 12505
Author(s):  
Bartolomé Sabater

The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Zheng ◽  
Li-Jun Yan ◽  
Kevin S. Burgess ◽  
Ya-Huang Luo ◽  
Jia-Yun Zou ◽  
...  

Abstract Background Natural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among three sympatric and closely related species. Results Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data. Conclusions Natural hybridization exists among the three Rhododendron species in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation of Rhododendron species in a biodiversity hotspot.


Sign in / Sign up

Export Citation Format

Share Document