thin walled structures
Recently Published Documents


TOTAL DOCUMENTS

951
(FIVE YEARS 243)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Vol 202 ◽  
pp. 103696
Author(s):  
Pavan Kumar Asur Vijaya Kumar ◽  
Aamir Dean ◽  
Shahab Sahraee ◽  
Jose Reinoso ◽  
Marco Paggi

2022 ◽  
Author(s):  
Lenard J. Halim ◽  
Sejal Sahu ◽  
Graeme Kennedy ◽  
Marilyn J. Smith

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 167
Author(s):  
Patryk Rozylo

The novelty of this paper, in relation to other thematically similar research papers, is the comparison of the failure phenomenon on two composite profiles with different cross-sections, using known experimental techniques and advanced numerical models of composite material failure. This paper presents an analysis of the failure of thin-walled structures made of composite materials with top-hat and channel cross-sections. Both experimental investigations and numerical simulations using the finite element method (FEM) are applied in this paper. Tests were conducted on thin-walled short columns manufactured of carbon fiber reinforced polymer (CFRP) material. The experimental specimens were made using the autoclave technique and thus showed very good strength properties, low porosity and high surface smoothness. Tests were carried out in axial compression of composite profiles over the full range of loading—up to total failure. During the experimental study, the post-buckling equilibrium paths were registered, with the simultaneous use of a Zwick Z100 universal testing machine (UTM) and equipment for measuring acoustic emission signals. Numerical simulations used composite material damage models such as progressive failure analysis (PFA) and cohesive zone model (CZM). The analysis of the behavior of thin-walled structures subjected to axial compression allowed the evaluation of stability with an in-depth assessment of the failure of the composite material. A significant effect of the research was, among others, determination of the phenomenon of damage initiation, delamination and loss of load-carrying capacity. The obtained results show the high qualitative and quantitative agreement of the failure phenomenon. The dominant form of failure occurred at the end sections of the composite columns. The delamination phenomenon was observed mainly on the outer flanges of the structure.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7809
Author(s):  
Li-Wu Wang ◽  
Jiang-Bo Bai ◽  
Yan Shi

Foldable and deployable flexible composite thin-walled structures have the characteristics of light weight, excellent mechanical properties and large deformation ability, which means they have good application prospects in the aerospace field. In this paper, a simplified theoretical model for predicting the position of the neutral section of a lenticular deployable composite boom (DCB) in tensile deformation is proposed. The three-dimensional lenticular DCB is simplified as a two-dimensional spring system and a rigid rod, distributed in parallel along the length direction. The position of the neutral cross-section can be determined by solving the balance equations and geometric relations. In order to verify the validity of the theoretical model, a finite element model of the tensile deformation of a lenticular DCB was established. The theoretical prediction results were compared with the finite element calculation results, and the two results were in good agreement.


2021 ◽  
pp. 147592172110571
Author(s):  
Fuzhen Wen ◽  
Shengbo Shan ◽  
Li Cheng

High-order harmonic guided waves are sensitive to micro-scale damage in thin-walled structures, thus, conducive to its early detection. In typical autonomous structural health monitoring (SHM) systems activated by surface-bonded piezoelectric wafer transducers, adhesive nonlinearity (AN) is a non-negligible adverse nonlinear source that can overwhelm the damage-induced nonlinear signals and jeopardize the diagnosis if not adequately mitigated. This paper first establishes that the second harmonic shear horizontal (second SH) waves are immune to AN while exhibiting strong sensitivity to cracks in a plate. Capitalizing on this feature, the feasibility of using second SH waves for crack detection is investigated. Finite element (FE) simulations are conducted to shed light on the physical mechanism governing the second SH wave generation and their interaction with the contact acoustic nonlinearity (CAN). Theoretical and numerical results are validated by experiments in which the level of the AN is tactically adjusted. Results show that the commonly used second harmonic S0 (second S0) mode Lamb waves are prone to AN variation. By contrast, the second SH0 waves show high robustness to the same degree of AN changes while preserving a reasonable sensitivity to breathing cracks, demonstrating their superiority for SHM applications.


2021 ◽  
Vol 205 ◽  
pp. 114188
Author(s):  
Arunima Banerjee ◽  
Sara Messina ◽  
Matthew R. Begley ◽  
Edwin J. Schwalbach ◽  
Michael A. Groeber ◽  
...  

Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Kai Liu ◽  
Lin’an Li ◽  
Mabao Liu

With the increasing damage of lives and properties caused by impact accidents, thin-walled tubes have been widely employed to make energy-absorbing structures in the field of automotive engineering due to their lightweight and energy absorption ability. In this work, we proposed three kinds of thin-walled bio-mimetic tubes inspired by horsetail plants and investigated the energy absorption abilities of the above structures with hollow columns under impact loading by means of the finite-element method. The effect of three factors, including column diameter, wall thickness, and impact angle, on the energy absorption characteristics of the bio-mimetic structure, is discussed. The primary outcome of this research is a design method for the use of thin-walled multi-cell tubes for an energy absorption device where impact loading is expected. It was also found that the energy absorption performances of the hexagonal structures are better than that of the triangular and quadrilateral ones. Moreover, the results revealed that the absorbed energy by thin-walled bio-mimetic structures shows more dependence on the impact angle than on the wall thickness of the tube.


Sign in / Sign up

Export Citation Format

Share Document