metallic surfaces
Recently Published Documents


TOTAL DOCUMENTS

1320
(FIVE YEARS 181)

H-INDEX

63
(FIVE YEARS 7)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Bin Ai ◽  
Ziwei Fan ◽  
Zi Jing Wong

AbstractThe field of plasmonics explores the interaction between light and metallic micro/nanostructures and films. The collective oscillation of free electrons on metallic surfaces enables subwavelength optical confinement and enhanced light–matter interactions. In optoelectronics, perovskite materials are particularly attractive due to their excellent absorption, emission, and carrier transport properties, which lead to the improved performance of solar cells, light-emitting diodes (LEDs), lasers, photodetectors, and sensors. When perovskite materials are coupled with plasmonic structures, the device performance significantly improves owing to strong near-field and far-field optical enhancements, as well as the plasmoelectric effect. Here, we review recent theoretical and experimental works on plasmonic perovskite solar cells, light emitters, and sensors. The underlying physical mechanisms, design routes, device performances, and optimization strategies are summarized. This review also lays out challenges and future directions for the plasmonic perovskite research field toward next-generation optoelectronic technologies.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Taekyung Kim ◽  
Sunmok Kwon ◽  
Jeehyeon Lee ◽  
Joon Sang Lee ◽  
Shinill Kang

AbstractMetallic surface finishes have been used in the anti-biofouling, but it is very difficult to produce surfaces with hierarchically ordered structures. In the present study, anti-biofouling metallic surfaces with nanostructures superimposed on curved micro-riblets were produced via top-down fabrication. According to the attachment theory, these surfaces feature few attachment points for organisms, the nanostructures prevent the attachment of bacteria and algal zoospores, while the micro-riblets prohibit the settlement of macrofoulers. Anodic oxidation was performed to induce superhydrophilicity. It forms a hydration layer on the surface, which physically blocks foulant adsorption along with the anti-biofouling topography. We characterized the surfaces via scanning electron and atomic force microscopy, contact-angle measurement, and wear-resistance testing. The contact angle of the hierarchical structures was less than 1°. Laboratory settlement assays verified that bacterial attachment was dramatically reduced by the nanostructures and/or the hydration layer, attributable to superhydrophilicity. The micro-riblets prohibited the settlement of macrofoulers. Over 77 days of static immersion in the sea during summer, the metallic surface showed significantly less biofouling compared to a surface painted with an anticorrosive coating.


2022 ◽  
Vol 12 (2) ◽  
pp. 608
Author(s):  
Jian Yi ◽  
Hao Zhou ◽  
Xingchen Han ◽  
Jiangwei Mao ◽  
Yonglai Zhang

In recent years, biomimetic materials inspired from natural organisms have attracted great attention due to their promising functionalities and cutting-edge applications, emerging as an important research topic. For example, how to reduce the reflectivity of the solid surface and increase the absorption of the substrate surface is essential for developing light response smart surface. Suitable solutions to this issue can be found in natural creatures; however, it is technologically challenging. In this work, inspired from butterfly wings, we proposed a laser processing technology to prepare micro nanostructured titanium alloy surfaces with anti-reflection properties. The reflectivity is significantly suppressed, and thus, the light absorption is improved. Consequently, the anti-reflection titanium alloy surface can be further employed as a photothermal substrate for developing light-responsive slippery surface. The sliding behavior of liquid droplets on the smart slippery surface can be well controlled via light irradiation. This method facilitates the preparation of low-reflection and high-absorption metallic surfaces towards bionic applications.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Cody Berry ◽  
Marcos S. G. Tsuzuki ◽  
Ahmad Barari

On-line data collection from the manufactured parts is an essential element in Industry 4.0 to monitor the production’s health, which required strong data analytics. The optical metrology-based inspection of highly reflective parts in a production line, such as parts with metallic surfaces, is a difficult challenge. As many on-line inspection paradigms require the use of optical sensors, this reflectivity can lead to large amounts of noise, rendering the scan inaccurate. This paper discusses a method for noise reduction and removal in datapoints resulting from scanning the reflective planar surfaces. Utilizing a global statistic-based iterative approach, noise is gradually removed from the dataset at increasing percentages. The change in the standard deviation of point-plane distances is examined, and an optimal amount of noisy data is removed to reduce uncertainty in representing the workpiece. The developed algorithm provides a fast and efficient method for noise reduction in optical coordinate metrology and scanning.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lucinda Mulko ◽  
Marcos Soldera ◽  
Andrés Fabián Lasagni

Abstract Direct laser interference patterning (DLIP) is a laser-based surface structuring method that stands out for its high throughput, flexibility and resolution for laboratory and industrial manufacturing. This top–down technique relies on the formation of an interference pattern by overlapping multiple laser beams onto the sample surface and thus producing a periodic texture by melting and/or ablating the material. Driven by the large industrial sectors, DLIP has been extensively used in the last decades to functionalize metallic surfaces, such as steel, aluminium, copper or nickel. Even so, DLIP processing of non-metallic materials has been gaining popularity in promising fields such as photonics, optoelectronics, nanotechnology and biomedicine. This review aims to comprehensively collect the main findings of DLIP structuring of polymers, ceramics, composites, semiconductors and other non-metals and outline their most relevant results. This contribution also presents the mechanisms by which laser radiation interacts with non-metallic materials in the DLIP process and summarizes the developed surface functions and their applications in different fields.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7301
Author(s):  
Agata Markowska-Szczupak ◽  
Oliwia Paszkiewicz ◽  
Beata Michalkiewicz ◽  
Adrianna Kamińska ◽  
Rafał Jan Wróbel

One-hundred-nanometer films consisting of silver, copper, and gold nanocrystallites were prepared, and their antibacterial properties were quantitatively measured. The magnetron-sputtering method was used for the preparation of the metallic films over the glass plate. Single- and double-layer films were manufactured. The films were thoroughly characterized with the XRD, SEM, EDS, and XPS methods. The antibacterial activity of the samples was investigated. Gram-negative Escherichia coli, strain K12 ATCC 25922 (E. coli), and Gram-positive Staphylococcus epidermidis, ATCC 49461 (S. epidermidis), were used in the microbial tests. The crystallite size was about 30 nm in the cases of silver and gold and a few nanometers in the case of copper. Significant oxidation of the copper films was proven. The antibacterial efficacy of the tested samples followed the order: Ag/Cu > Au/Cu > Cu. It was concluded that such metallic surfaces may be applied as contact-killing materials for a more effective fight against bacteria and viruses.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7912
Author(s):  
Verena Weber ◽  
Laura Brigo ◽  
Giovanna Brusatin ◽  
Giovanni Mattei ◽  
Danilo Pedron ◽  
...  

This paper reports on the fabrication and characterization of a plasmonic/sol-gel sensor for the detection of aromatic molecules. The sol-gel film was engineered using polysilsesquioxanes groups to capture the analyte, through π-π interaction, and to concentrate it close to the plasmonic surface, where Raman amplification occurs. Xylene was chosen as an analyte to test the sensor. It belongs to the general class of volatile organic compounds and can be found in water or in the atmosphere as pollutants released from a variety of processes; its detection with SERS is typically challenging, due to its low affinity toward metallic surfaces. The identification of xylene was verified in comparison with that of other aromatic molecules, such as benzene and toluene. Investigations were carried out on solutions of xylene in cyclohexane, using concentrations in the range from 0 to 800 mM, to evaluate the limit of detection (LOD) of about 40 mM.


Sign in / Sign up

Export Citation Format

Share Document