electric bus
Recently Published Documents


TOTAL DOCUMENTS

920
(FIVE YEARS 427)

H-INDEX

31
(FIVE YEARS 8)

Trudy NAMI ◽  
2022 ◽  
pp. 60-67
Author(s):  
I. K. Maslennikov ◽  
K. E. Karpukhin ◽  
A. V. Klimov ◽  
B. K. Ospanbekov

Introduction (problem statement and relevance). Currently, one of the main and promising directions in the automotive industry is the development of the electric vehicle and charging infrastructure sector. The constant tightening of environmental requirements, the development of traction batteries (TAB) and automotive electronics are the main factors in the development of wheeled electric vehicles. The operation of electric buses on urban routes in modern cities is one of the promising developments of electric buses use. But the problem is, the TAB capacity, its resource and cost are still limited, therefore a key task in the development of an electric vehicles the choice of the most effective control algorithms and components of the traction electric drive (TED). The solution to this problem requires working out a simulation model, the accuracy and complexity of which must satisfy the chosen goal.The purpose of the study was to develop and verify a KAMAZ 6282 electric bus simulation model basing on experimental data.Methodology and research methods. The article presents an experimental and calculated data analysis of the main electric bus movement modes when driving in a city: acceleration, coasting, braking, upward movement.Scientific novelty and results. Basing on comparing the experimental and calculated data results, it has been determined that the presented simulation model of the electric bus was sufficient and adequate to determine the main performance indicators of the TED.Practical significance. The presented simulation model made it possible to analyze the performance indicators, on the basis of which the selection of the optimal TED components could be carried out. The simplicity of the simulation model allowed it to be used as part of optimal control algorithms and evaluate the electric bus movement along a city route.


2022 ◽  
Vol 960 (1) ◽  
pp. 012022
Author(s):  
E Tudor ◽  
A Marinescu ◽  
R Prejbeanu ◽  
A Vintila ◽  
T Tudorache ◽  
...  

Abstract Today, the technology of automatic battery charging based on Wireless Power Transfer (WPT) for the electric mass transit industry involving electric trains, buses and trams, is being used more and more. The modern solution described in this paper proposes an innovative technology for mixed charging of electric buses, either by wireless charging for 2-3 minutes in selected stations, or by plug-in charging at the end of the bus line, which results in only minimal energy storage on board - practically enough to get to the next charging station. The reduction of the weight of the battery packs determines the increase of the number of passengers transported, but also a reduction of the purchase price of the bus, without reducing the performances. The conversion can cost about half the price of new electric buses, depending on the condition of the vehicle and the extent of the work. This solution can be applied especially for the conversion of Diesel buses into electric buses which is not only sustainable, but also significantly better in terms of investment and operational costs, comparing with the purchase of new electric buses.


2022 ◽  
Vol 182 ◽  
pp. 86-101
Author(s):  
Haidan Wang ◽  
Yulong Song ◽  
Yiyou Qiao ◽  
Shengbo Li ◽  
Feng Cao

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Yu-Jie Liu ◽  
Qun Sun ◽  
Qiang Han ◽  
Hai-Gang Xu ◽  
Wen-Xiao Han ◽  
...  

Author(s):  
Hyeongho Lim ◽  
Changhee Kim ◽  
Kyongsu Yi ◽  
Kwangki Jeon

This paper describes design, implementation, and evaluation of human driving data-based Lane Keeping Assistance System (LKAS) for electric bus equipped with a hybrid electric power steering system. The hybrid electric-power steering system used in this study means a steering system in which an Electric Power Steering (EPS) system and an Electro-Hydraulic Power Steering (EHPS) system are integrated into a ball-nut. A dynamic model of hybrid EPS system including EHPS system and EPS system has been developed to generate EPS torque and EHPS force corresponding to the input torque. In order to determine proper timing of LKAS intervention, driving data of electric bus drivers were collected and driving patterns were analyzed using a 2-D normal distribution probability density function. Lane information necessary for the lane-keeping assistance system is obtained from a vision camera mounted on the electric bus. Sliding mode control is used to get a Steering Wheel Angle (SWA) required for LKAS. A Proportional–Integral (PI) control is used to obtain an overlay torque required to track the target SWA. A proposed DLC threshold has been validated using vehicle simulation software, TruckSim, and MATLAB/Simulink. It is shown that the proposed DLC threshold shows good performance in both cases of slow lane departure and fast lane departure. The proposed algorithm has been successfully implemented on the electric bus and evaluated via real-world driving tests. Test scenario setting and the evaluation of performance were carried out by ISO 11270 criteria. It is shown that the algorithm successfully prevented the electric bus from unintended lane departure satisfying ISO 11270 criteria.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8346
Author(s):  
Kristián Čulík ◽  
Vladimíra Štefancová ◽  
Karol Hrudkay ◽  
Ján Morgoš

This paper focuses on the statistical evaluation of various operating characteristics of electric buses. The data obtained for statistical evaluation come from practice. In this paper, we focus on electricity consumption—an important aspect of electric bus operation. The ambient temperature significantly affects electricity consumption. In this paper, we use applied mathematics—correlation analysis, we accurately identify the effect of temperature on the consumption of the electric bus. Our next goal was to define the relationship between the loss of energy from the battery and driving power. We used regression analysis to describe this relation. Our article also includes an example of the practical use of ANOVA analysis in identifying a statistically significant effect of a particular vehicle on average consumption. We also show results from previous research and compare two different types of electric buses in operation.


2021 ◽  
Vol 11 (24) ◽  
pp. 11761
Author(s):  
Gabriel Chiriac ◽  
Dumitru Dorin Lucache ◽  
Costică Nițucă ◽  
Alin Dragomir ◽  
Seeram Ramakrishna

The use of electric buses is increasing all over the world; this is due to the aim of limiting pollution in heavily urbanized areas. Using electric buses is one element of the desire to drop local pollution to zero emissions. The necessary electricity can be generated through centralized production, and in the case of electric buses, the pollution level is directly proportional to the amount of electricity produced. Their limited onboard power needs optimization, both in terms of traction and in auxiliary energy consumption. Heating in electric buses consumes the most energy from the auxiliaries, which can reduce the range of the vehicle up to a half, or more in the coldest days of the winter months. In this context, a precise estimation of heat loss and of the energy necessary for heating electric buses is crucial. Using the heat transfer theory, the heat balance method, and the U-value estimation, this article estimates the heat loss for a typical 12 m electric bus for a harsh winter day. Thermal simulations were made in order to estimate the heat flux through the structure of the bus (windows, walls, roof, and floor). Heat loss components were calculated in order to determine the most affected zones of the bus. The calculated data for the energy necessary to heat the bus were compared with the heating system data from an electric bus. By optimizing the necessary auxiliary energy consumption, the emissions at the source of electricity production will be significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document