entropy change
Recently Published Documents


TOTAL DOCUMENTS

1150
(FIVE YEARS 265)

H-INDEX

58
(FIVE YEARS 6)

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 62
Author(s):  
Md. Farid Ahmed ◽  
Malik Abdul Rub ◽  
Md. Tuhinur R. Joy ◽  
Mohammad Robel Molla ◽  
Naved Azum ◽  
...  

Herein, the conductivity measurement technique is used to determine the interactions that may occur between polyvinyl pyrrolidone (PVP) polymer and cetylpyridinium chloride (CPC) surfactant in the presence of NaCl and Na2SO4 of fixed concentration at variable temperatures (298.15–323.15 K) with an interval of 5 K. In the absence or presence of salts, we observed three critical micelle concentrations (CMC) for the CPC + PVP mixture. In all situations, CMC1 values of CPC + PVP system were found to be higher in water than in attendance of salts (NaCl and Na2SO4). Temperature and additives have the tendency to affect counterion binding values. Various physico-chemical parameters were analyzed and demonstrated smoothly, including free energy (ΔG0m), enthalpy (ΔH0m) and entropy change (ΔS0m). The micellization process is achieved to be spontaneous based on the obtained negative ΔG0m values. The linearity of the ΔHmo and ΔSmo values is excellent. The intrinsic enthalpy gain (ΔH0*m) and compensation temperature (Tc) were calculated and discussed with logical points. Interactions of polymer hydrophobic chains or the polymer + surfactant associated with amphiphilic surface-active drugs can employ a strong impact on the behavior of the gels.


Author(s):  
Jagadish Kumar Galivarapu ◽  
Ashika Jose ◽  
Erappanal Padmanabhan Jinu ◽  
Thirumalainaidu Thiagarajan Saravanan ◽  
Senthil Kumar Eswaran ◽  
...  

Abstract We report on observation of Griffiths phase, high magnetocaloric properties at low magnetic fields and temperature dependent critical exponents of La0.7Sr0.3VxMn1-xO3 (x=0, 0.05 & 0.1) perovskite bulk materials. The Curie temperature (TC) of pure La0.7Sr0.3MnO3 is seen to be 368.7 K and decreases towards room temperature (342.2 K) by 10 mol% vanadium doping at the Mn site. Vanadium doping leads to enhancement in magnetic entropy change (-SM) from 1 Jkg-1K-1to 1.41 Jkg-1K-1. Vanadium doping at Mn site leads to the formation of Griffiths phase, a magnetic disorder due to the co-existence of paramagnetic matrix and short range ferromagnetic clusters. X-ray photoelectron spectroscopy analysis confirm the presence of mixed valance V4+/V5+along with Mn3+/ Mn4+ ions contributing to various double exchange interactions. Nature of phase transitions and magnetic interactions are analyzed by evaluating critical exponents and. All the samples show second-order ferromagnetic (FM) to paramagnetic (PM) phase transition, confirmed from the modified Arrott’s plots and critical exponent analysis carried out using Kouvel-Fisher method. Enhancement in magnetic entropy change along with the decrease in Curie temperature towards room temperature by vanadium doping in the La0.7Sr0.3MnO3 oxides indicates the possible application of these materials for the magnetic refrigeration at low magnetic fields.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shixian Zhang ◽  
Quanling Yang ◽  
Chenjian Li ◽  
Yuheng Fu ◽  
Huaqing Zhang ◽  
...  

AbstractAlthough the elastocaloric effect was found in natural rubber as early as 160 years ago, commercial elastocaloric refrigeration based on polymer elastomers has stagnated owing to their deficient elastocaloric effects and large extension ratios. Herein, we demonstrate that polymer elastomers with uniform molecular chain-lengths exhibit enormous elastocaloric effects through reversible conformational changes. An adiabatic temperature change of −15.3 K and an isothermal entropy change of 145 J kg−1 K−1, obtained from poly(styrene-b-ethylene-co-butylene-b-styrene) near room temperature, exceed those of previously reported elastocaloric polymers. A rotary-motion cooling device is tailored to high-strains characteristics of rubbers, which effectively discharges the cooling energy of polymer elastomers. Our work provides a strategy for the enhancement of elastocaloric effects and could promote the commercialization of solid-state cooling devices based on polymer elastomers.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Xi-Chun Zhong ◽  
Xu-Tao Dong ◽  
Jiao-Hong Huang ◽  
Cui-Lan Liu ◽  
Hu Zhang ◽  
...  

A one-step sintering process was developed to produce magnetocaloric La(Fe,Si)13/Ce-Co composites. The effects of Ce2Co7 content and sintering time on the relevant phase transformations were determined. Following sintering at 1373 K/30 MPa for 1–6 h, the NaZn13-type (La,Ce)(Fe,Co,Si)13 phase formed, the mass fraction of α-Fe phase reduced and the CeFe7-type (La,Ce)(Fe,Co,Si)7 phase appeared. The mass fraction of the (La,Ce)(Fe,Co,Si)7 phase increased, and the α-Fe phase content decreased with increasing Ce2Co7 content. However, the mass fraction of the (La,Ce)(Fe,Co,Si)7 phase reduced with increasing sintering time. The EDS results showed a difference in concentration between Co and Ce at the interphase boundary between the 1:13 phase and the 1:7 phase, indicating that the diffusion mode of Ce is reaction diffusion, while that of Co is the usual vacancy mechanism. Interestingly, almost 100 % single phase (La,Ce)(Fe,Co,Si)13 was obtained by appropriate Ce2Co7 addition. After 6 h sintering at 1373 K, the Ce and Co content in the (La,Ce)(Fe,Co,Si)13 phase increased for larger Ce2Co7 content. Therefore, the Curie temperature increased from 212 K (binder-free sample) to 331 K (15 wt.% Ce2Co7 sample). The maximum magnetic entropy change (−∆SM)max decreased from 8.8 (binder-free sample) to 6.0 J/kg∙K (15 wt.% Ce2Co7 sample) under 5 T field. High values of compressive strength (σbc)max of up to 450 MPa and high thermal conductivity (λ) of up to 7.5 W/m∙K were obtained. A feasible route to produce high quality La(Fe,Si)13 based magnetocaloric composites with large MCE, good mechanical properties, attractive thermal conductivity and tunable TC by a one-step sintering process has been demonstrated.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 368
Author(s):  
Mariusz Hasiak ◽  
Jan Świerczek

The microstructure, revealed by X-ray diffraction and transmission Mössbauer spectroscopy, magnetization versus temperature, external magnetizing field induction and mechanical hardness of the as-quenched Fe75Zr4Ti3Cu1B17 amorphous alloy with two refractory metals (Zr, Ti) have been measured. The X-ray diffraction is consistent with the Mössbauer spectra and is characteristic of a single-phase amorphous ferromagnet. The Curie point of the alloy is about 455 K, and the peak value of the isothermal magnetic entropy change, derived from the magnetization versus external magnetizing field induction curves, equals 1.7 J·kg−1·K−1. The refrigerant capacity of this alloy exhibits the linear dependence on the maximum magnetizing induction (Bm) and reaches a value of 110 J·kg−1 at Bm = 2 T. The average value of the instrumental hardness (HVIT) is about 14.5 GPa and is superior to other crystalline Fe-based metallic materials measured under the same conditions. HVIT does not change drastically, and the only statistically acceptable changes are visibly proving the single-phase character of the material.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 343
Author(s):  
Huihui Song ◽  
Yuhu Hu ◽  
Jiale Zhang ◽  
Jinyu Fang ◽  
Xueling Hou

The melt-spun ribbons of LaFe11.5Si1.5Cx (x = 0, 0.1, 0.2, 0.3) compounds are prepared by the melt fast-quenching method. The doping of C is beneficial to the nucleation and precipitation of the La (Fe, Si)13 phase, which is indicated by the microstructure observation and the elemental analysis. Subsequently, the ribbons of LaFe11.5Si1.5C0.2 are annealed at different times, and the phase composition, the microstructures, and the magnetic properties are investigated. The LaFe11.5Si1.5C0.2 ribbons annealed at 1273 K for 2 h achieved the best magnetic properties, and the maximum isothermal magnetic entropy change with a value of 9.45 J/(kg·K) upon an applied field of 1.5 T at an increased Curie temperature 255 K.


Author(s):  
Natalia Lindner ◽  
Zbigniew Śniadecki ◽  
Mieszko Kołodziej ◽  
Jean-Marc Grenèche ◽  
Jozef Marcin ◽  
...  

AbstractA magnetocaloric effect with wide tunability was observed in melt-spun amorphous Gd65Fe15-xCo5+xAl10Si5 (x = 0, 5, 10) alloys of different Fe/Co ratios. Their magnetic properties were compared with those of the previously investigated parent alloy Gd65Fe10Co10Al15. The glassy structure of the melt-spun samples was confirmed by X-ray diffraction (XRD) and 57Fe Mössbauer spectrometry. Their Curie temperatures (TC) were between 155 and 195 K and increased significantly with decreasing Co content. The highest value of the magnetic entropy change ΔSM = − 6.8 J/kg K was obtained for Gd65Fe5Co15Al10Si5, when the magnetic field was increased from 0 to 5 T. Refrigerant capacity (RC) takes values close to 700 J/kg for the whole series of the alloys. The occurrence of the second-order phase transition and the conformity of the magnetic behavior with the mean field model were concluded on the basis of the analysis of the universal curves and the values of the exponent n (ΔSM ∝ Hn). Graphical abstract


2022 ◽  
Vol 207 ◽  
pp. 114303
Author(s):  
Yao Liu ◽  
Andong Xiao ◽  
Tianzi Yang ◽  
Zhitong Xu ◽  
Xianglong Zhou ◽  
...  

2021 ◽  
Vol 30 (6) ◽  
pp. 630-635
Author(s):  
Jamil Ahmad ◽  

The relationship between entropy and reversible heat and temperature is developed using a simple cycle, in which an ideal gas is subjected to isothermal expansion and compression and heated and cooled between states. The procedure is easily understood by students if they have knowledge of calculations involving internal energy, reversible work, and heat capacity for an ideal gas. This approach avoids the more time-consuming Carnot cycle. The treatment described here illustrates how the total entropy change resulting from an irreversible process is always positive.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongxue Qi ◽  
Xianjun Niu ◽  
Haipeng Wu ◽  
Xiuping Liu ◽  
Yongqiang Chen

To investigate the adsorption behavior of Cu (I)-MOF material for chromium (VI) in water, the parameters of influencing adsorption were optimized and found as follows: the optimal pH was 6 for the adsorption of Cr (VI) by the Cu (I)-MOF, the optimal amount of adsorbent was 0.45 g·L−1, and the adsorption saturation time was within 180 min. Subsequently, the kinetics results were fitted by four models such as pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. Among them, the adsorption of chromium (VI) was more inclined to the pseudo-first-order model (Radj2 = 0.9230). Then, the isotherm data were fitted by Langmuir and Freundlich models. The results indicated that Langmuir isotherm was the excellent match model (Radj2 = 0.9827). It belongs to a monolayer adsorption, and the maximum adsorption capacity was 95.92 mg·g−1. Subsequently, the thermodynamic parameters of the adsorption were calculated as follows: enthalpy change (ΔHθ) was −8.583 kJ·mol−1, entropy change (ΔSθ) was −8.243 J·mol−1 K−1, and the Gibbs function change (ΔGθ) was less than zero in the temperature range of 288–328 K, indicating that the reaction was spontaneous. Finally, both the spectra of infrared and XPS supported the adsorption mechanism that belonged the ion exchange. The spectra of XRD and SEM images shown that the structure of Cu (I)-MOF remained stable for at least 3 cycles. In conclusion, Cu (I)-MOF material has a high adsorption capacity, good water stability, low cost, and easy to prepare in large quantities in practical application. It will be a promising adsorbent for the removal of Cr (VI) from water.


Sign in / Sign up

Export Citation Format

Share Document