lineage specificity
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 23)

H-INDEX

23
(FIVE YEARS 3)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 372
Author(s):  
Feyisara Eyiwumi Oni ◽  
Qassim Esmaeel ◽  
Joseph Tobias Onyeka ◽  
Rasheed Adeleke ◽  
Cedric Jacquard ◽  
...  

Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host–microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy–molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant–pathogen interactions and in the enhancement of plant innate immunity.


2021 ◽  
Author(s):  
Daniel Patrick Higgins ◽  
Caroline M Weisman ◽  
Dominique S Lui ◽  
Frank A D'Agostino ◽  
Amy Karol Walker

Genome-wide measurement of mRNA or protein levels provides broad data sets for biological discovery. However, subsequent computational methods are essential for uncovering the functional implications of the data as well as intuitively visualizing the findings. Current computational tools are biased toward well-described pathways, limiting their utility for novel discovery. Recently, we developed an annotation and category enrichment tool for Caenorhabditis elegans genomic data, WormCat, that provides an intuitive visualization output. Unlike GO, which excludes genes with no annotation information retains these genes as a special UNASSIGNED category. Here, we show that the UNASSIGNED gene category shows tissue-specific expression patterns and include genes with biological functions. Poorly annotated genes have previously been considered to lack homologs in closely related species. Instead, we find that around 3% of the UNASSIGNED genes have poorly characterized human orthologs. These human orthologs are themselves poorly characterized. A recently developed method that incorporates lineage relationships (abSENSE) indicates that failure of BLAST to detect homology explains the apparent lineage specificity for many UNASSIGNED genes, suggesting that a larger subset could be related to human genes. WormCat provides an annotation strategy that allows association of UNASSIGNED genes with specific phenotypes and known pathways. Our analysis indicates that the UNASSIGNED gene category contains candidates that merit further functional study which could yield insight into understudied areas of biology.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 448
Author(s):  
Adrian Galitz ◽  
Yoichi Nakao ◽  
Peter J. Schupp ◽  
Gert Wörheide ◽  
Dirk Erpenbeck

Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal pathways and evolution of compound production in sponges. This benefits the discovery rate and yield of bioprospecting for novel marine natural products by identifying lineages with high potential of being new sources of valuable sponge compounds. In this review, we summarize the current biochemical data on sponges and compare the metabolite distribution against a sponge phylogeny. We assess compound specificity to lineages, potential convergences, and suitability as diagnostic phylogenetic markers. Our study finds compound distribution corroborating current (molecular) phylogenetic hypotheses, which include yet unaccepted polyphyly of several demosponge orders and families. Likewise, several compounds and compound groups display a high degree of lineage specificity, which suggests homologous biosynthetic pathways among their taxa, which identifies yet unstudied species of this lineage as promising bioprospecting targets.


Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 107
Author(s):  
Paik Wah Chow ◽  
Zariyantey Abd Hamid ◽  
Ramya Dewi Mathialagan ◽  
Nor Fadilah Rajab ◽  
Salwati Shuib ◽  
...  

Previous reports on hematotoxicity and leukemogenicity related to benzene exposure highlighted its adverse effects on hematopoiesis. Despite the reported findings, studies concerning the mechanism of benzene affecting chromosomal integrity in lineage-committed hematopoietic stem/progenitor cells (HSPCs) remain unclear. Here, we studied the clastogenicity and aneugenicity of benzene in lineage-committed HSPCs via karyotyping. Isolated mouse bone marrow cells (MBMCs) were exposed to the benzene metabolite 1,4-benzoquinone (1,4-BQ) at 1.25, 2.5, 5, 7, and 12 μM for 24 h, followed by karyotyping. Then, the chromosomal aberration (CA) in 1,4-BQ-exposed hematopoietic progenitor cells (HPCs) comprising myeloid, Pre-B lymphoid, and erythroid lineages were evaluated following colony-forming cell (CFC) assay. Percentage of CA, predominantly via Robertsonian translocation (Rb), was increased significantly (p < 0.05) in MBMCs and all progenitors at all concentrations. As a comparison, Pre-B lymphoid progenitor demonstrated a significantly higher percentage of CA (p < 0.05) than erythroid progenitor at 1.25, 2.5, and 7 μM as well as a significantly higher percentage (p < 0.05) than myeloid progenitor at 7 μM of 1,4-BQ. In conclusion, 1,4-BQ induced CA, particularly via Rb in both MBMCs and HPCs, notably via a lineage-dependent response. The role of lineage specificity in governing the clastogenicity and aneugenicity of 1,4-BQ deserves further investigation.


Author(s):  
Corinne Maufrais ◽  
Luciana de Oliveira ◽  
Rafael W Bastos ◽  
Frédérique Moyrand ◽  
Flavia C G Reis ◽  
...  

Abstract The genomes of a large number of Cryptococcus neoformans isolates have been sequenced and analyzed in recent years. These genomes have been used to understand the global population structure of this opportunistic pathogen. However, only a small number of South American isolates have been considered in these studies, and the population structure of C. neoformans in this part of the world remains elusive. Here, we analyzed the genomic sequences of 53 Brazilian Cryptococcus isolates and deciphered the C. neoformans population structure in this country. Our data reveal an African-like structure that suggested repeated intercontinental transports from Africa to South America. We also identified a mutator phenotype in one VNBII Brazilian isolate, exemplifying how fast-evolving isolates can shape the Cryptococcus population structure. Finally, phenotypic analyses revealed wide diversity but not lineage specificity in the expression of classical virulence traits within the set of isolates.


2021 ◽  
Author(s):  
Munir J Nur ◽  
Kelsey Jordan Wood ◽  
Richard W Michelmore

Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildew of many plants. These pathogens are major contributors to losses in many food crops. Oomycetes secrete "effector" proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using sequence similarity. We developed a pipeline, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: (1) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino acid sequence of a protein and is trained on experimentally verified oomycete effectors and (2) a pipeline based on lineage-specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates, while still recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors.


2021 ◽  
Author(s):  
Sanket Girish Shah ◽  
Mudasir Rashid ◽  
Abhiram Natu ◽  
Sanjay Gupta

AbstractRecent advancements in the field of histone biology imply non-redundancy in the function of histone H2A isoforms; however, the expression of H2A isoforms in various normal tissue types, the correlation among organs and tumor/tumor type-specific expression remain poorly investigated. The profiling of sixteen H2A isoforms in eleven different normal human tissue types strongly suggests their tissue-specific or predominant expression. Further, clustering analysis shows a lineage-specific correlation of H2A isoforms. In continuation, the expression analysis in twelve human tumor types shows overexpression of HIST2H2AC. Moreover, overexpression was observed exclusively in tumor samples but not with fetal samples; highlighting the cancer-specific association of HIST2H2AC. Further, in silico analysis of TCGA pan-cancer data also showed tumor-specific over-expression of the HIST2H2AC isoform. Our findings provide insights into tissue-type-specificity of histone H2A isoforms expression patterns and advance our understanding of their importance in lineage specification and cancer.


2021 ◽  
Author(s):  
Siddharth Sethi ◽  
David Zhang ◽  
Sebastian Guelfi ◽  
Zhongbo Chen ◽  
Sonia Garcia-Ruiz ◽  
...  

AbstractThere is growing evidence for the importance of 3’ untranslated region (3’UTR) dependent regulatory processes. However, our current human 3’UTR catalogue is incomplete. Here, we developed a machine learning-based framework, leveraging both genomic and tissue-specific transcriptomic features to predict previously unannotated 3’UTRs. We identify unannotated 3’UTRs associated with 1,513 genes across 39 human tissues, with the greatest abundance found in brain. These unannotated 3’UTRs were significantly enriched for RNA binding protein (RBP) motifs and exhibited high human lineage-specificity. We found that brain-specific unannotated 3’UTRs were enriched for the binding motifs of important neuronal RBPs such as TARDBP and RBFOX1, and their associated genes were involved in synaptic function and brain- related disorders. Our data is shared through an online resource F3UTER (https://astx.shinyapps.io/F3UTER/). Overall, our data improves 3’UTR annotation and provides novel insights into the mRNA-RBP interactome in the human brain, with implications for our understanding of neurological and neurodevelopmental diseases.


2021 ◽  
Author(s):  
Corinne Maufrais ◽  
Luciana de Oliveira ◽  
Rafael W. Bastos ◽  
Frédérique Moyrand ◽  
Flavia C. G. Reis ◽  
...  

AbstractThe genome of a large number of Cryptococcus neoformans isolates has been sequenced and analyzed in recent years. These genomes have been used to understand the global population structure of this opportunistic pathogen. However, only a small number of South American isolates have been considered in these studies, and the population structure of C. neoformans in this part of the world remains evasive. Here, we analyzed the genomic sequences of 53 Brazilian Cryptococcus isolates and deciphered the C. neoformans population structure in this country. Our data reveal an African-like structure that suggesting repeated and privileged intercontinental transports from Africa to South America. We also identified a mutator phenotype in one VNBII Brazilian isolate, exemplifying how fast-evolving isolates can shape the Cryptococcus population structure. Finally, phenotypic analyses revealed wide diversity but not lineage specificity in the expression of classical virulence traits within the set of isolates.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 118
Author(s):  
Arsala Ali ◽  
Kyudong Han ◽  
Ping Liang

Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans.


Sign in / Sign up

Export Citation Format

Share Document