hydration product
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 50)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 2148 (1) ◽  
pp. 012060
Author(s):  
Zhaoyang Ding ◽  
Qun Su ◽  
Hongguan Bian ◽  
Qing Wang ◽  
Jinghai Zhou

Abstract Geopolymer recycled aggregate concrete (GRAC) was prepared by replacing cement with geopolymer and natural aggregate with wast concrete. The effect of water-glass modules on mechanical properties of GRAC was studied. It was found that there are tow kind of binding structures in geopolymer hydration product: C-A-S-H and N-A-S-H, they both contribute to the strength of GRAC. The value of size conversion coefficient of current national standard is inapplicable for GRAC, the calculation method of which is given in this paper. Elasticity modulus and peak stress of GRAC is proportional to water-glass modulus, and peak strain is inversely proportional and its constitutive equation was established.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yaobin Li ◽  
Xin Guo ◽  
Sheng Xue ◽  
Chun-Shan Zheng ◽  
Maoliang Shen ◽  
...  

To improve the borehole sealing effect, especially that of coal seam with low permeability and micro fissures, this paper takes the expansion rate of the sealing material as the response value and establishes the quadratic model embracing the expansion rate and various experimental factors by designing orthogonal experiments. The response surface is used to further determine the significance order of each key factor according to the expansion rate and adjust the admixture content to obtain the optimal ratio of the sealing material. For the research investigating a sealing material, the optimal ratio of the sealing material is obtained: the content of water reducing agent of 0.5%, the content of retarder of 0.04%, water-cement ratio of 0.8, and the content of expansion agent of 10%. At this time, the expansion rate reaches 3.136%. Besides, a scanning electron microscope is used to observe the microscopic morphology of the material. According to the scanning electron microscopy analysis of new borehole sealing materials, the surface of the new borehole sealing material shows no holes and possesses compactness; and a large amount of ettringite is formed on the surface of the hydration product of hardened cement slurry. The ettringite improves the expansibility of the material. The new sealing material provides a new idea for gas sealing, which is of great significance to improve the efficiency of borehole extraction, improve the utilization rate of resources, and prevent gas accidents.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Meimei Song ◽  
Chuanlin Wang

Glass fibre reinforced cement (GFRC) is a composite material with great ductility but it undergoes severe strength and ductility degradation with ageing. Calcium sulfoaluminate (CSA) cement is low carbon cement, and more importantly, it exhibits great potential to produce more ductile and durable GFRC. This study focuses on mechanical performance, e.g., compressive strength, stress-strain curve, and freeze-thaw resistance of CSA/GFRC as well as its microstructural characteristics under low temperatures. XRD was applied to investigate the hydration mechanism of CSA cement under −5°C, 0°C, and 5°C. It was found out that low-temperature environments have very little effect on the type of hydration products, and the main hydration product of hydrated CSA cement cured under low temperatures is ettringite. Moreover, low-curing temperatures have an adverse effect on the compressive strength developments of CSA/GFRC but the strength difference compared with that under 20°C reduces gradually with increasing curing ages. In terms of bending performance, both ultimate tensile strength and ultimate strain value indicate considerable degradation with ageing under low temperatures after 14 d. The ultimate strain value reduces to 0.34% at −5°C, 0.39% at 0°C, and 0.44% at 5°C compared with 0.51% for that cured at 20°C for 28 d. The tensile strength of samples cured at −5°C for 28 d is only 15.2 MPa, taking up only 40% of that under 20°C. CSA/GFRC also demonstrated great capability in the antifreeze-thaw performance, and the corresponding strength remains 95.9%, 94.7%, 94.2%, and 94.3%, respectively, for that cured under 20°C, 5°C, 0°C, and −5°C after 50 freeze-thaw cycles. Microstructural studies reveal that densification of the interfilamentary space with intermixtures of C-A-S-H and ettringite is the main reason that causes the degradation of CSA/GFRC, which may result in loss on flexibility when forces are applied, therefore reducing the post-peak toughness to some extent.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5433
Author(s):  
Hui Wu ◽  
Zhujian Xie ◽  
Liwen Zhang ◽  
Zhiwei Lin ◽  
Shimin Wang ◽  
...  

Magnesium phosphate cement (MPC), a new type of inorganic cementitious material, is favored in engineering and construction because of its fast setting speed and high bonding strength, but is limited in practical application due to its high production cost and excessive release of hydration heat. Relevant research has investigated the application of discarded oyster shell powder (OSP) replacing cement mortar and has reported certain improvements to its performance. Consequently, focusing on discovering more effects of OSP on MPC performance, this study, by using a typical three-point bending test, used 45 cuboid specimens to investigate the influences of OSP mass content on flexural properties of MPC at different curing times. Results illustrated that MPC flexural strength was first increased and then decreased, and 3% is the critical value for OSP mass content. Similarly, the stiffness of all specimens presented a tendency to increase first and then decrease, with a maximum value of 36.18 kN/mm appearing at 3%, i.e., the critical OSP mass content. Finally, scanning electron microscope (SEM) and X-ray diffraction (XRD) were employed to analyze the microstructure and composition of specimens, confirming that the specimens generated not only the hydration product potassium phosphate magnesium (MgKPO4·6H2O, MKP), but also another new reactant (CaHPO4·2H2O).


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5347
Author(s):  
Mónica Antunes ◽  
Rodrigo Lino Santos ◽  
João Pereira ◽  
Ricardo Bayão Horta ◽  
Patrizia Paradiso ◽  
...  

In this work, the apparent activation energy (Ea) of a novel low-calcium binder was, for the first time, experimentally determined, using a calorimetric approach. Additionally, a correlation between the Ea, measured at the acceleration period with the C/S ratio of the hydration product is proposed. The Ea of the prepared pastes was determined through isothermal calorimetry tests by calculating the specific rate of reaction at different temperatures, using two different approaches. When comparing the Ea, at the acceleration period of this novel binder with the one published for alite and belite, we observed that its value is higher, which may be a result of a different hydration product formed with a distinct C/S ratio. Finally, to study the temperature effect on the compressive strength at early ages, a set of experiments with mortars was performed. The results showed that the longer the curing time at 35 °C, the higher the compressive strength after 2 days of hydration, which suggests a higher initial development of hydration products. This study also indicated that the novel binder has a higher sensitivity to temperature when compared with ordinary Portland cement (OPC).


2021 ◽  
Vol 8 ◽  
Author(s):  
Kuisheng Liu ◽  
Zhenguo Liu ◽  
Jianwei Sun

Blast furnace ferronickel slag (BFNS), currently an underutilized metallurgical residue, was investigated for use as a precursor for alkaline activation. Water glass solutions with various moduli (0.5, 1.0, 1.5 and 2.0) were used at the same water glass concentration of 10% to investigate the influence of the modulus on hydration and mechanical properties. The results show that the modulus has a certain impact on the hydration and mechanical strength development of alkali-activated BFNS. Increasing the modulus of water glass does not change the type of hydration product and the activity of the Mg-containing phases, but it decreases the amount of C2AS, the Ca/Si and Al/Si ratios of the (N,C)-A(M)-S-H gel. In addition, a high silicate modulus deteriorates the pore structure, which has an adverse effect on the development of compressive strength and splitting tensile strength.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4516
Author(s):  
Weitao Liu ◽  
Yueyun Qin ◽  
Xiangxi Meng ◽  
Lifu Pang ◽  
Mengke Han ◽  
...  

The internal fractures in coal and rock mass are important factors affecting the safety of underground engineering such as coalbed methane exploitation, so the comprehensive properties of materials used to seal the fractures are particularly critical. In this paper, firstly, the indexes of the main factors affecting the plugging material (viscosity, bleeding rate, setting time, and strength) were analyzed. Then, the sensitivity of the materials used to seal the fractures was studied and discussed using a principal component analysis and response surface analysis (RSM-PCA). The primary conclusions are as follows: (1) Bleed rate and setting time were the first principal components affecting the comprehensive properties of the plugging materials, and compressive strength was the second principal component. (2) The regression equation was established to characterize the comprehensive properties of the integrated plugging materials, and the optimal mix ratio was 34% of cement content, 11% of sand content, and 0.53 of the W/C. (3) The microscopic results showed that the silicate minerals in the consolidated body grow in a bridging manner and formed a mixed gel with cement hydration product to fill the pores and microcracks and improved the interface transition zone.


2021 ◽  
Vol 1036 ◽  
pp. 199-207
Author(s):  
Lang Du ◽  
Xiang Zhou ◽  
Liang Li ◽  
Yu Xiang Li ◽  
Xue Ma

The influence of uranium simulated waste water on the hydration properties of the cement was studied by modern test methods such as TAM air, XRD, FTIR, and SEM-EDS. The results show that uranium can promote the hydration of mineral C3S, and inhibit the hydration of mineral C3A. By comparing scanning of hydration products, it was found that the existence of uranium significantly changed the morphology of clinker hydration products , but uranium had little effect on the type of clinker hydration product.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 731
Author(s):  
Chunlong Huang ◽  
Zirui Cheng ◽  
Jihui Zhao ◽  
Yiren Wang ◽  
Jie Pang

The ferrite aluminate cement (FAC) could rapidly lose fluidity or workability due to its excessive hydration rate, and greatly reduce the construction performance. Chemical admixtures are commonly used to provide the workability of cement-based materials. In this study, to ensure required fluidity of FAC, chemically different water reducing agents are incorporated into the FAC pastes. The experiments are performed with aliphatic water reducing agent (AP), polycarboxylic acid water reducing agent (PC) and melamine water reducing agent (MA), respectively. Influence of the water reducing agents on fluidity, setting time, hydration process, hydration product and zeta potential of the fresh cement pastes is investigated. The results show that PC has a better dispersion capacity compared to AP and MA. Besides decreasing water dosage, PC also acts as a retarder, significantly increasing the setting times, delaying the hydration rate and leading to less ettringite in the hydration process of FAC particles. The water reducing agents molecules are adsorbed on the surface of positively charged minerals and hydration products, however, for PC, steric hindrance from the long side chain of PC plays a critical role in dispersing cement particles, whereas AP and MA acting through an electrostatic repulsion force.


Sign in / Sign up

Export Citation Format

Share Document