gyrator transform
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Vol 54 (2) ◽  
Author(s):  
Mohamed G. Abdelfattah ◽  
Salem F. Hegazy ◽  
Nihal F. F. Areed ◽  
Salah S. A. Obayya

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaojing Cheng

The encryption and privacy protection of multimedia image resources are of great value in the information age. The utilization of the gyrator transform domain model in multimedia image encryption can select parameters more accurately, so it has a wider scope of utilization and further ameliorates the stability of the whole system. On account of this, this paper first analyzes the concept and connotation of gyrator transform, then studies the image encryption algorithm on account of gyrator transform, and verifies the robustness of the gyrator transform algorithm under the influence of noise interference, shear attack, and other factors through the high robust multimedia image encryption and result analysis of gyrator transform.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hang Chen ◽  
Zhengjun Liu ◽  
Camel Tanougast ◽  
Walter Blondel

AbstractAn asymmetric cryptosystem is presented for encrypting multiple images in gyrator transform domains. In the encryption approach, the devil’s spiral Fresnel lens variable pure phase mask is first designed for each image band to be encrypted by using devil’ mask, random spiral phase and Fresnel mask, respectively. Subsequently, a novel random devil’ spiral Fresnel transform in optical gyrator transform is implemented to achieved the intermediate output. Then, the intermediate data is divided into two masks by employing random modulus decomposition in the asymmetric process. Finally, a random permutation matrix is utilized to obtain the ciphertext of the intact algorithm. For the decryption approach, two divided masks (private key and ciphertext) need to be imported into the optical gyrator input plane simultaneously. Some numerical experiments are given to verify the effectiveness and capability of this asymmetric cryptosystem.


2021 ◽  
Vol 138 ◽  
pp. 106448
Author(s):  
Hang Chen ◽  
Zhengjun Liu ◽  
Camel Tanougast ◽  
Feifei Liu ◽  
Walter Blondel

2021 ◽  
Author(s):  
Anshula ◽  
Hukum Singh

Abstract An asymmetric optical cryptosystem to encrypt images using devil’s vortex Fresnel lens (DVFLs) phase masks and lower upper decomposition with partial pivoting (LUDPP) is proposed in gyrator transform domain. The proposed cryptosystem utilizes DVFLs which are the complex phase masks designed using the combination of a phases of devil’s lens (DL), vortex lens(VL), and Fresnel lens (FL). LUDPP is an operation used to decompose the matrix and is utilized to supersede the phase-truncation (PT) task in the traditional phase-truncated Fourier transform (PTFT). Hence, the proposed method is immune to the attacks to which the PTFT-based cryptosystems are vulnerable. The cryptosystem is asymmetric as both the encryption and decryption processes are different along with different keys. The private keys generated during the encryption process are utilised in the decryption process to retrieve the original image. The encryption and decryption process can be realised with both the digital and the modified optical architecture. In order to show the strength and robustness of the proposed encryption, a conspire numerical simulation was performed.


2020 ◽  
Vol 13 (4) ◽  
pp. 672-685
Author(s):  
Hukum Singh ◽  
Mehak Khurana

Background: Optical Vortex (OV) has attracted attention amongst many researchers. Paper proposes a nonlinear scheme of image encryption based on Optical Vortex (OV) and Double Random Phase Encoding (DRPE) in the Gyrator Transform (GT) domain under phase truncation operations. Objective: The amplitude and phase truncation operation in the image encryption generates two decryption keys and convert the method to nonlinear. It has also been proposed opto-electronically. Original image can only be decrypted with correct values of OV, GT rotation angles and Decryption Keys (DKs). Methods: A novel asymmetric image encryption scheme, using optical vortex mask has been proposed in view of amplitude and phase truncation operation. The scheme becomes more strengthened by the parameters used in the Optical Vortex (OV) and by taking the (n)th power operation in the encryption path and (n)th root operation in the decryption path. Results: It shows that for each of the encryption parameters, binary image has greater sensitivity as compared to the grayscale image. This scheme inflates the security by making use of OV-based Structured Phase Mask (SPM) as it expands the key space. The scheme has also been investigated for its robustness and its sensitivity against various attacks such as noise and occlusion attacks under number of iterations. Conclusion: This scheme provides solution to the problem of key space with the use of GT rotational angles and OV phase mask thus enhances the security. The scheme has been verified based on various security parameters such as occlusion, noise attacks, CC, entropy etc.


Sign in / Sign up

Export Citation Format

Share Document