monolithic zirconia
Recently Published Documents


TOTAL DOCUMENTS

434
(FIVE YEARS 237)

H-INDEX

29
(FIVE YEARS 7)

Author(s):  
Niwut Juntavee ◽  
Apa Juntavee ◽  
Thipradi Phattharasophachai

Abstract Objective Different post-sintering processes are expected to be a reason for alteration in the strength of zirconia. This study evaluated the effect of post-sintering processes on the flexural strength of different types of monolithic zirconia. Materials and Methods A total of 120 classical- (Cz) and high-translucent (Hz) monolithic zirconia discs (1.2 mm thickness and 14 mm in Ø) were prepared, sintered, and randomly divided into four groups to be surface-treated with (1) as-glazed (AG); (2) finished and polished (FP); (3) finished, polished, and overglazed (FPOG); and (4) finished, polished, and heat-treated (FPHT) technique (n = 15). Biaxial flexural strength (σ) was determined on a piston-on-three ball in a universal testing machine at a speed of 0.5 mm/min. Statistical Analysis Analysis of variance, and post hoc Bonferroni multiple comparisons were determined for significant differences (α = 0.05). Weibull analysis was applied for survival probability, Weibull modulus (m), and characteristic strength (σ0). The microstructures were examined with a scanning electron microscope and X-ray diffraction. Results The mean ± standard deviation value of σ (MPa), m, and σ0 were 1,626.43 ± 184.38, 9.51, and 1,709.79 for CzAG; 1,734.98 ± 136.15, 12.83, and 1,799.17 for CzFP; 1,636.92 ± 130.11, 14.66, and 1,697.63 for CzFPOG; and 1,590.78 ± 161.74, 10.13, and 1,663.82 for CzFPHT; 643.30 ± 118.59, 5.59, and 695.55 for HzAG; 671.52 ± 96.77, 3.28, and 782.61 for HzFP; 556.33 ± 122.85, 4.76, and 607.01 for HzFPOG; and 598.36 ± 57.96, 11.22, and 624.89 for HzFPHT. The σ was significantly affected by the post-sintering process and type of zirconia (p < 0.05), but not by their interactions (p > 0.05). The Cz indicated a significantly higher σ than Hz. The FP process significantly enhanced σ more than other treatment procedures. Conclusion Post-sintering processes enabled an alteration in σ of zirconia. FP enhanced σ, while FPOG and FPHT resulted in a reduction of σ. Glazing tends to induce defects at the glazing interface, while heat treatment induces a phase change to tetragonal, both resulted in reducing σ. Finishing and polishing for both Cz and Hz monolithic zirconia is recommended, while overglazed or heat-treated is not suggested.


Author(s):  
Yutao JIAN ◽  
Tianyi ZHANG ◽  
Xiaodong WANG ◽  
Laina KYAW ◽  
Edmond Ho Nang POW ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 1019-1024
Author(s):  
Sarika Sharma ◽  
Soni Kumari ◽  
Nikita Raman ◽  
Ashish K Srivastava ◽  
Gunja LNU ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 244
Author(s):  
Reem AlMutairi ◽  
Hend AlNahedh ◽  
Ahmed Maawadh ◽  
Ahmed Elhejazi

In this study, the biaxial flexural strength (BFS) and fractography of high/ultra-translucent monolithic zirconia ceramics subjected to different mechanical surface pretreatments were evaluated. A total of 108 disc-shaped samples (12 mm diameter, 1.2 mm thickness) of three zirconia materials (5Y-ZP KATANA Zirconia UTML (ML), 3Y-TZP DD Bio ZX2 (DB), and 5Y-ZP DD cube X2 (DC)) were used. The BFS was investigated after subjecting the samples to surface treatment using air abrasion particles of two types (aluminum oxide or glass microbeads). The data were analyzed using two-way analysis of variance, followed by Scheffe’s post hoc test for multiple comparisons. The mean ± standard deviation BFS for DB was highest after treatment with 50 µm Al2O3 (1626.05 ± 31.9 MPa), with lower values being observed following treatment with 50 µm glass microbeads (1399.53 ± 24.2 MPa) and in the control sample (1198.51 ± 21.1 MPa). The mean ± standard deviation (SD) BFSs for DC and ML were the highest in the control groups. Surface air abrasion with 50 µm Al2O3 particles and 2 bar pressure is recommended for 3Y-TZP translucent zirconia, while no abrasion of 5Y-ZP translucent zirconia ceramic.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7474
Author(s):  
Mi-Hyang Cho ◽  
Hyo-Joung Seol

Glazing is the final heat treatment process in the manufacturing of a monolithic zirconia prosthesis. Herein, the effect of cooling rate during zirconia glazing was investigated. A 3 mol% yttria-stabilized tetragonal zirconia polycrystal was glazed at the general cooling rate suggested by the manufacturer, as well as at higher and lower cooling rates, and the differences in flexural strength, hardness, optical properties, and crystal structure were evaluated. A higher cooling rate did not affect the flexural strength, hardness, grain size, optical properties, or crystal structure; however, the Weibull modulus decreased by 1.3. A lower cooling rate did not affect the flexural strength, optical properties, or crystal structure; however, the Weibull characteristic strength increased by 26.7 MPa and the Weibull modulus increased by 0.9. The decrease in hardness and the increase in grain size were statistically significant; however, the numerical differences were negligible. This study revealed that a lower cooling rate provides more reliable flexural strength. Therefore, glazing can proceed at a general cooling rate, which takes 3–4 min; however, glazing at a lower cooling rate will provide a more consistent flexural strength if desired, despite being time-consuming.


Author(s):  
Marwah Ismael Abdulazeez ◽  
Manhal A. Majeed

Abstract Objective The aim of this study was to evaluate the influence of different marginal designs (deep chamfer, vertical, and modified vertical with reverse shoulder) on the fracture strength and failure modes of monolithic zirconia crowns. Materials and Methods Thirty sound human maxillary first premolar teeth with comparable size were used in this study. The teeth were divided randomly into three groups according to the preparation design (n = 10): (1) group A: teeth prepared with a deep chamfer finish line; (2) group B: teeth prepared with vertical preparation; and (3) group C: teeth prepared with modified vertical preparation, where a reverse shoulder of 1 mm was placed on the buccal surface at the junction of middle and occlusal thirds. All samples were scanned by using an intraoral scanner (CEREC Omnicam, Sirona, Germany), and then the crowns were designed by using Sirona InLab 20.0 software and milled with a 5-axis machine. Each crown was then cemented on its respective tooth with self-adhesive resin cement by using a custom-made cementation device. A single load to failure test was used to assess the fracture load of each crown by using a computerized universal testing machine that automatically recorded the fracture load of each sample in Newton (N). Statistical Analysis The data were analyzed statistically by using one-way analysis of variance test and Bonferroni test at a level of significance of 0.05. Results The highest mean of fracture load was recorded by chamfer (2,969.8 N), which followed by modified vertical (2,899.3 N) and the lowest mean of fracture load was recorded by vertical (2,717.9 N). One-way ANOVA test revealed a significant difference among the three groups. Bonferroni test showed a significant difference between group A and group B, while a nonsignificant difference was revealed between group C with group A and group B. Conclusion Within the limitations of this in vitro study, the mean values of fracture strength of monolithic zirconia crowns of all groups were higher than the maximum occlusal forces in the premolar region. The modification of the vertical preparation with a reverse shoulder placed at the buccal surface improved the fracture strength up to the point that it was statistically nonsignificant with the chamfer group.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7006
Author(s):  
Edoardo Rella ◽  
Paolo De Angelis ◽  
Giovanni Damis ◽  
Antonio D’Addona ◽  
Paolo Francesco Manicone

Angulated screw channels (ASC) allow the clinician to reposition the access hole of screw-retained restorations, improving the design of the rehabilitation and the esthetic outcome. Few clinical studies are available on the efficacy of these restorations, especially at longer follow-ups and with a large number of subjects. The objective of this study was therefore to retrospectively evaluate patients rehabilitated with screw-retained restorations using ASC. The time of delivery and their adherence to the maintenance program was obtained, as well as the characteristics of the restoration and of the patient’s occlusion; a Kaplan–Meier survival curve was then built to investigate the success rate of these restorations and the effects of several variables were evaluated with a Cox model. A total of 105 subjects and 162 implants were enrolled in this study; after 42 months a success rate (92%) similar to what is reported for conventional screw-retained restorations was encountered. Monolithic zirconia restorations (n = 52) had a higher success rate (95%) when compared to partially veneered restorations (n = 53), which suffered a higher number of complications (90%). The other variables had no statistically significant effect. Implant supported prostheses adopting ASC provide a favorable outcome both in the posterior and anterior regions and can therefore be adopted to treat cases where the implant angulation is unfavorable for a conventional screw-retained prosthesis.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7022
Author(s):  
Raj Gaurav Singh ◽  
Kai-Chun Li ◽  
Karl Michael Lyons ◽  
John Neil Waddell

(1) Background: The effect of glazing on the mechanical properties of monolithic high translucent zirconia is not well reported. Therefore, the purpose of this study was to evaluate the effect of glazing on the flexural strength of high translucent zirconia; (2) Methods: Ninety specimens were prepared from second-generation 3Y-TZP high translucent blocks and divided into three groups. Glaze materials were applied on one surface of the specimen and subjected to a four-point bending test and flexural stress and flexural displacement values were derived. Descriptive fractographic analysis of surfaces was conducted to observe the point of failure and fracture pattern.; (3) Results: Control-nonglazed (647.17, 1σ = 74.71 MPa) presented higher flexural strength values compared to glaze I (541.20, 1σ = 82.91 MPa) and glaze II (581.10, 1σ = 59.41 MPa). Characteristic strength (σƟ) from Weibull analysis also observed higher (660.67 MPa) values for the control specimens. Confocal microscopy revealed that glazed surfaces were much rougher than control surfaces. Descriptive fractographic analysis revealed that there was no correlation between the point of failure initiation and flexural strength; (4) Conclusions: The test results demonstrated that glazing significantly decreased the flexural strength and flexural displacement of the zirconia specimens.


Sign in / Sign up

Export Citation Format

Share Document