strength and deformation
Recently Published Documents


TOTAL DOCUMENTS

824
(FIVE YEARS 207)

H-INDEX

36
(FIVE YEARS 7)

Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 32-93
Author(s):  
Guanxi Yan ◽  
Zi Li ◽  
Sergio Andres Galindo Torres ◽  
Alexander Scheuermann ◽  
Ling Li

This work reviews the transient two-phase flow in porous media with engineering applications in Geotechnics. It initially overviews constitutive relationships, conventional theories, and experiments. Then, corresponding limitations are discussed according to conflicting observations and multiphase interfacial dynamics. Based on those findings, the dynamic nonequilibrium effects were so defined, which could also be abbreviated as dynamic/transient effects. Four advanced theories have already been developed to resolve these effects. This review collects them and discusses their pros and cons. In addition, this work further reviews the state-of-art in terms of experimental methods, influential factors in dynamic/transient effects, and modelling performance, as well as micromodel and numerical methods at pore-scale. Last, the corresponding geotechnical applications are reviewed, discussing their applicability in effective stress, shear strength, and deformation. Finally, the entire review is briefed to identify research gaps in Geotechnics.


2021 ◽  
Vol 1 (2) ◽  
pp. 3-9
Author(s):  
† Artavazd Avetik Arzumanyan ◽  
Avetik Artavazd Arzumanyan ◽  
Hasmik Hamle Qaramyan ◽  
Nelli Gagik Muradyan

The article presents a visual and instrumental research of the technical condition of the main rock-cut structures and their masonry additions, the documentation of their damages (cracks, crevices, destructions and erosions) and deformations, thorough complete laboratory studies of rock samples and their physical and mechanical characteristics, conceptual approaches to preventive and reinforcing measures necessary for the further safe survival of structures, as well as the comprehensive development and implementation of measures to prevent further damages (elimination of causes) and ensure the long-term existence of structures. Based on the analyses carried out, it is recommended to use a ready-made dry mixture mortar of the “Mapegrout'' brand produced by the Italian company “Mapei” to fill cracks if necessary. It is available in the market of the country and is successfully used in the reconstruction of tunnels and other underground structures. The issues of compatibility of reinforcing materials with sandstone rock are also considered on the basis of some averaged data of the main decisive physical and mechanical characteristics of the strength and deformation of sandstone.


2021 ◽  
Vol 2021 (2) ◽  
pp. 1-6
Author(s):  
Roman Tytarenko ◽  
◽  
Roman Khmil ◽  
Iryna Dankevych ◽  
◽  
...  

The article presents a theoretical analysis of existing concepts to evaluate the non-failure of RC structures in operation. To perform the analysis, the authors considered a number of scientific works of both Ukrainian and foreign researchers. The main focus was on works in which the model of the stochastic nature of the RC structure operation included random parameters of acting loads, as well as the reserve of its bearing capacity and serviceability (geometric dimensions of cross sections of constructive members, strength and deformation characteristics of materials, etc.). Among others, according to the authors, important problems in terms of analysis of a single work were the volume of statistical selection of random parameters, their number and impact on the study result, as well as rationality of the adopted method of calculating the probability of failure (or non-failure work) of RC structure in operation. Based on the processing of a number of scientific works, the authors highlight the relevance, advantages and disadvantages of the concepts of non-failure assessment proposed there, as well as the formulate the conclusions and recommendations for further experimental and theoretical research in this area.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4347
Author(s):  
Sergey A. Stel’makh ◽  
Evgenii M. Shcherban’ ◽  
Alexey Beskopylny ◽  
Levon R. Mailyan ◽  
Besarion Meskhi ◽  
...  

Polymer composite reinforcement (PCR) and its use to produce high-quality concrete with the right design and technological and formulation solutions can demonstrate the results obtained with the steel rebars. This article discusses the synergistic effect from the combined reinforcement of concrete with traditional polymer rods and dispersed fiber, which, as a result, lead to an increase in strength and deformation characteristics and an improvement in the performance of compressed and bent structural elements. The synergistic effect of the joint work of polymer rods and dispersed reinforcement is considered in the context of relative indicators (structural quality factor CSQ), showing the relationship between strength characteristics and concrete density. The behavior of glass fiber in a cement matrix and the nature of its deformation during fracture were studied by scanning electron microscopy. It is shown that the use of PCR and dispersed reinforcement makes it possible to increase the strength characteristics of concrete in bending. In quantitative terms, the achieved results demonstrated that the CSQ values of a beam reinforced with a PCR frame with the addition of glass fiber were 3.4 times higher compared to the CSQ of a beam reinforced with steel reinforcement frames. In addition, for a beam reinforced with a PCR frame with no fiber addition, the CSQ values were three times higher.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7467
Author(s):  
Meng-Hsiu Tsai ◽  
Chia-Ming Yang ◽  
Yu-Xuan Hung ◽  
Chao-Yong Jheng ◽  
Yen-Ju Chen ◽  
...  

Ti6Al4V specimens with porous structures can be fabricated by additive manufacturing to obtain the desired Young’s modulus. Their mechanical strength and deformation behavior can be evaluated using finite element analysis (FEA), with various models and simulation methodologies described in the existing literature. Most studies focused on the evaluation accuracy of the mechanical strength and deformation behavior using complex models. This study presents a simple elastic model for brittle specimens followed by an electron beam additive manufacturing (EBAM) process to predict the initial crack site and threshold of applied stress related to the failure of cubic unit lattice structures. Six cubic lattice specimens with different porosities were fabricated by EBAM, and compression tests were performed and compared to the FEA results. In this study, two different types of deformation behavior were observed in the specimens with low and high porosities. The adopted elastic model and the threshold of applied stress calculated via FEA showed good capabilities for predicting the initial crack sites of these specimens. The methodology presented in this study should provide a simple yet accurate method to predict the fracture initiation of porous structure parts.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hongtao Liu ◽  
Pengchao Kong ◽  
Taoping Ye

To improve the construction efficiency of precast structures, reinforced concrete corbels acted as support members are the most common connection method. This work presents the performance of a specific beam-to-column connection using corbels with different anchorage arrangements in precast beam-slab-column interior joint taken out from precast underground subway station. This paper investigates the performance of a specific full-scale precast concrete beam-slab-column interior joint with corbels and various connected methods subjected to low-cycle repeated loading. Meanwhile, the influences of concrete corbels (including column- and beam-end corbels) on the shear strength and deformation are investigated. The analyses results indicated that (1) corbels of the laminated beam (composite beam) can obviously improve the shear stress of the core region, which was beneficial for specimen design followed the strong-joint-weak-member concept; (2) a simplified approach to deal with the uneven thickness of corbels in the core region was proposed, which was utilized to study the effect of thickness on the shear performance of the core region; (3) the shear stress increased with respect to the compression stress, and the shear strain had a trend of decreasing according to calculating results using modified compression field theory; and (4) the deterministic expressions were proposed to predict the designed load of column corbels based on three different connection methods between laminated beams and core region of joint.


Sign in / Sign up

Export Citation Format

Share Document