random number generation
Recently Published Documents


TOTAL DOCUMENTS

821
(FIVE YEARS 223)

H-INDEX

39
(FIVE YEARS 6)

Author(s):  
Kouichi AKAHANE ◽  
Atsushi Matsumoto ◽  
Umezawa Toshimasa ◽  
Naokatsu YAMAMOTO ◽  
Yuki Yata ◽  
...  

Abstract Random signal generation in a ring resonator laser is achieved with quantum-dot semiconductor optical amplifiers. The lasing spectra were obtained over a wide range of wavelength, and the individual longitudinal modes acted as the channels for random number generation.


Author(s):  
Sudeepa Keregadde Balakrishna ◽  
Sannidhan Manjaya Shetty ◽  
Jason Elroy Martis ◽  
Balasubramani Ramasamy

Author(s):  
Nozomi Akashi ◽  
Kohei Nakajima ◽  
Mitsuru Shibayama ◽  
Yasuo Kuniyoshi

Abstract Random number generation has become an indispensable part of information processing: it is essential for many numerical algorithms, security applications, and in securing fairness in everyday life. Random number generators (RNG) find application in many devices, ranging from dice and roulette wheels, via computer algorithms, lasers to quantum systems, which inevitably capitalize on their physical dynamics at respective spatio-temporal scales. Herein, to the best of our knowledge, we propose the first mathematically proven true RNG (TRNG) based on a mechanical system, particularly the triple linkage of Thurston and Weeks. By using certain parameters, its free motion has been proven to be an Anosov flow, from which we can show that it has an exponential mixing property and structural stability. We contend that this mechanical Anosov flow can be used as a TRNG, which requires that the random number should be unpredictable, irreproducible, robust against the inevitable noise seen in physical implementations, and the resulting distribution's controllability (an important consideration in practice). We investigate the proposed system's properties both theoretically and numerically based on the above four perspectives. Further, we confirm that the random bits numerically generated pass the standard statistical tests for random bits.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 142
Author(s):  
Tair Askar ◽  
Bekdaulet Shukirgaliyev ◽  
Martin Lukac ◽  
Ernazar Abdikamalov

Monte Carlo methods rely on sequences of random numbers to obtain solutions to many problems in science and engineering. In this work, we evaluate the performance of different pseudo-random number generators (PRNGs) of the Curand library on a number of modern Nvidia GPU cards. As a numerical test, we generate pseudo-random number (PRN) sequences and obtain non-uniform distributions using the acceptance-rejection method. We consider GPU, CPU, and hybrid CPU/GPU implementations. For the GPU, we additionally consider two different implementations using the host and device application programming interfaces (API). We study how the performance depends on implementation parameters, including the number of threads per block and the number of blocks per streaming multiprocessor. To achieve the fastest performance, one has to minimize the time consumed by PRNG seed setup and state update. The duration of seed setup time increases with the number of threads, while PRNG state update decreases. Hence, the fastest performance is achieved by the optimal balance of these opposing effects.


2021 ◽  
Author(s):  
Radosław Cybulski

Pseudo-random number generation techniques are an essential tool to correctly test machine learning processes. The methodologies are many, but also the possibilities to combine them in a new way are plenty. Thus, there is a chance to create mechanisms potentially useful in new and better generators. In this paper, we present a new pseudo-random number generator based on a hybrid of two existing generators - a linear congruential method and a delayed Fibonacci technique. We demonstrate the implementation of the generator by checking its correctness and properties using chi-square, Kolmogorov and TestU01.1.2.3 tests and we apply the Monte Carlo Cross Validation method in classification context to test the performance of the generator in practice.


Author(s):  
Mahmoud M. Smadi ◽  
Mahmoud H. Alrefaei

The Rayleigh distribution was proposed in the fields of acoustics and optics by lord Rayleigh. It has wide applications in communication theory, such as description of instantaneous peak power of received radio signals, i.e. study of vibrations and waves. It has also been used for modeling of wave propagation, radiation, synthetic aperture radar images, and lifetime data in engineering and clinical studies. This work proposes two new extensions of the Rayleigh distribution, namely the Rayleigh inverted-Weibull (RIW) and the Rayleigh Weibull (RW) distributions. Several fundamental properties are derived in this study, these include reliability and hazard functions, moments, quantile function, random number generation, skewness, and kurtosis. The maximum likelihood estimators for the model parameters of the two proposed models are also derived along with the asymptotic confidence intervals. Two real data sets in communication systems and clinical trials are analyzed to illustrate the concept of the proposed extensions. The results demonstrated that the proposed extensions showed better fitting than other extensions and competing models.


Sign in / Sign up

Export Citation Format

Share Document