ion exchange resin
Recently Published Documents


TOTAL DOCUMENTS

2110
(FIVE YEARS 260)

H-INDEX

64
(FIVE YEARS 8)

2022 ◽  
Vol 422 ◽  
pp. 126960
Author(s):  
Chen Liu ◽  
Jenna Chu ◽  
Natalie L. Cápiro ◽  
John D. Fortner ◽  
Kurt D. Pennell

2022 ◽  
Vol 2155 (1) ◽  
pp. 012024
Author(s):  
I I Sadikov ◽  
B Kh Yarmatov ◽  
T M Usmanov

Abstract The work is devoted to the development of methods for determining the elemental and isotopic composition of spent ion-exchange resin, industrial waste and environmental objects using an inductively coupled plasma mass spectrometer and analyzing specific samples to determine the content of noble and rare metals in technological materials, industrial waste and natural objects with application of the developed techniques. This article determines the elemental composition of the spent ion-exchange resin SIM202 with the Inductively coupled plasma mass spectrometry (ICP-MS) method and also shows the comparison of the results with neutron activation analysis (NAA). The distribution coefficient of elements in a chromatographic column in ion-exchange resins TAO and SIM202 is given.


2021 ◽  
Vol 15 (2) ◽  
pp. 231
Author(s):  
Satryo Dewanto Suryohendrasworo

Pada tahun 2025, diperkirakan kebutuhan baterai Li-ion akan mencapai 400.000 ton. Upaya strategis diperlukan untuk mewujudkan pemakaian baterai Li-ion yang berkelanjutan. Setelah siklus pemakaian baterai Li-ion berakhir, baterai Li-ion akan diproses kembali untuk diambil kandungan logam-logam penting yang terkandung di dalam katoda, terutama litium. Secara umum, proses recycle tersebut dilakukan dengan metode hidrometalurgi yang terdiri atas rangkaian leaching dan presipitasi. Namun demikian, dalam proses pemurnian tersebut dihasilkan air limbah yang mengandung beragam logam dengan konsentrasi yang berbeda. Untuk baterai LFP, logam-logam tersebut berasal dari katoda yang mengandung Li, Na, Si, dan PO4. Proses pelindian dan pencucian serbuk katoda membutuhkan air dalam jumlah yang relatif besar. Pengolahan air limbah hasil proses daur ulang baterai diharapkan dapat secara signifikan meningkatkan efisiensi penggunaan air. Pada eksperimen ini, metode adsorpsi batch dengan ion-exchange resin kation Amberlite HPR1100 Na dan resin anion Dowex Marathon A digunakan untuk menghilangkan ion logam dari air limbah artifisial. Pengambilan sampel air limbah yang diolah diambil pada menit ke-3, 6, 10, 20, 30 dan hari ke-3. Berdasarkan pada hasil removal percentage, diperoleh bahwa pengolahan air limbah artifisial metode adsorpsi dengan menggunakan ion-exchange resin kation Amberlite HPR1100 Na dapat mengurangi kadar ion litium dan natrium sampai 100% pada menit ke-20 dengan variasi dosis adsorben 10 g/100 mL, sedangkan penggunaan ion-exchange resin anion Dowex Marathon A dapat mengurangi kadar ion fosfat sampai 100% pada menit ke-30 dengan dosis adsorben 10 g/100 mL. Dengan adsorpsi isotherm didapat model Langmuir lebih sesuai dengan data eksperimen dengan nilai parameter Qm dan KL untuk ion litium sebesar 1,16 mg/g dan 2,57 mg/g, ion natrium sebesar 74,62 mg/g dan 0,04 mg/gL/mg, dan ion fosfat sebesar 208,33 mg/g dan 0,06 mg/g. Selain itu, studi kinetika menunjukkan bahwa model pseudo second-order memiliki kesesuaian data yang lebih baik daripada pseudo first-order.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4394
Author(s):  
Conghui Li ◽  
Xiaolu Han ◽  
Xiaoxuan Hong ◽  
Xianfu Li ◽  
Hui Zhang ◽  
...  

Since the advent of ion exchange resin, it has been widely used in many fields, including drug delivery systems. The drug binds to the resin through an exchange reaction to form a drug–resin complex, which can gradually release drugs through the exchange of physiological ions in the gastrointestinal tract, to realize functions such as taste masking and regulating release. In this study, the complexes of methylphenidate hydrochloride and Amberlite IRP69 were prepared and evaluated to explore the mechanism of complexation, influencing factors and release mechanism at a molecular level. Firstly, with the properties of the selected complexes, molecular dynamics simulation was innovatively used to find that the intermolecular interaction between drug molecules and ion exchange resin molecules is mainly caused by the stacking effect of π and salt bridges. Secondly, with the drug loading status as an indicator, the factors affecting the compounding process of the drug and resin were explored. Finally, the release mechanism of the drug–resin complex was studied by mathematical model fitting. In summary, a variety of methods were used to study the mechanism of complexation and release between drug and resin, providing a theoretical basis for promoting the marketing of ion−exchange resin−mediated oral preparations.


2021 ◽  
Author(s):  
Hind S. Dossary ◽  
Fahd I. Alghunaimi ◽  
Young C. Choi

Abstract Produced water is considered one of the largest by volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variety of contaminants that make up produce water. A variety of treatment methods have been studied and implemented. These methods aim to reduce the hydrocarbon content and the number of contaminants in produced water to meet the disposal, reuse, and environmental regulations. These contaminants can include dispersed oil droplets, suspended solids, dissolved solids, heavy metals, and other production chemicals. Some of those contaminates have value and can be a commodity in different applications such as bromine (Br). Bromine ions can be used to form calcium bromide, which is considered one of the most effective drilling agents and is used extensively in drilling and completion operations. This paper aims to highlight the utilization and the new extraction method of bromide ions from produced water to form calcium bromide (CaBr2). The conventional preparation of calcium-bromide drilling and completion fluids involves adding solid calcium-bromide salts to the water, which can be relatively expensive. Another method can involve the handling of strong oxidants and toxic gas to form solid calcium bromide. The novel method outlined in this paper is a cost-effective and environmentally friendly way of generating calcium bromide from produced water. The method includes processing the produced water to recover bromide ions. This is done by first passing the produced water through a resin bed, including bromine-specific ion exchange resin, where the bromide ions will adsorb/absorb onto the resin, as shown in Figure-1. The second step involves regenerating the resin with regenerant having calcium cations and water to form calcium bromide. The final stage is generating the calcium bromide in the water from the bed of resin by introducing concentrated CaCl2, forming a concentrated solution of water and calcium bromide. The developed solution will be further processed to give drilling and completion fluids. This novel method constitutes a good example of produced water utilization in different applications to minimize waste and reduce the costs of forming highly consumable materials.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012029
Author(s):  
Oranut Yosma ◽  
Chalad Yuenyao

Abstract This research aims to synthesize a silica xerogel from rice straw that is a residue biomass generating from agriculture. Purity and morphological structure of synthesized silica xerogel are also studied. The first step of the synthesis is the preparation of sodium silicate from rice straw ash that is then used as silica source. To prepare a silica source, pretreated rice straw was burnt at 700 °C for 2 h to obtain a rice straw ash. After that resulted rice straw ash is washed and reacted with 1.0 M HCl and 2.0 M NaOH aqueous solution at 80 °C for 1 h, respectively. The reacted solution is then filtrated two times by a no.41 filter paper and ion exchange resin, respectively. The obtained sodium silicate is mixed with 1.0 M HCl under stirring for 6 h to produce the nano-silica. To increase the purity of nano-silica xerogels, as-synthesized silica was washed with deionized water for 3 times. Washed silica is dried in electric oven at 85 °C overnight and calcined at 500 °C for 5 h. Scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) and % whiteness are employed to evaluate the morphology and purity of particles. Experimental results showed that nano-silica with purity up to 99.0 wt% was completely synthesized. Different morphological structure of silica synthesized under pH of 7, 8 and 9 were obtained.


Sign in / Sign up

Export Citation Format

Share Document