proliferative markers
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 24)

H-INDEX

13
(FIVE YEARS 3)

Pathologia ◽  
2021 ◽  
Vol 18 (3) ◽  
pp. 254-262
Author(s):  
L. M. Zakhartseva ◽  
H. Ye. Chytaieva

The aim of this study was to evaluate relations of mitotic index (MI), necrosis, IHC proliferative markers Ki-67 and PHH3, and their predictive value for lung neuroendocrine tumors (NETs) aggressiveness. Materials and methods. The study used surgical and biopsy material from 64 patients with lung NETs before chemotherapy prescribing. Morphological study and IHC was performed. MI, necrosis, Ki-67 and PHH3 expression and metastatic disease and survival were estimated using nonparametric statistics. Results. Statistically significant association of necrosis severity and survival rates was found (P = 0.021). This was true for comparing patients with no necrosis in tumor tissue and extensive foci of necrosis (P = 0.023). MI appeared to be associated with metastases in lymph nodes (P = 0.003) and with distant metastatic lesions (P = 0.029). Significant, direct association of Ki-67 and MI (P < 0.001), MI and PHH3 expression (P < 0.001) was found. However, there was no significant link between Ki-67 and PHH3 rates (P = 0.240). Ki-67 didn’t show any significant association with necrosis and metastases. Also, Ki-67 rates didn’t affect the patient survival. Data on PHH3 expression and their estimation appeared to be rather contradictory. PHH3 expression rates were lower than expected and did not exceed neither Ki-67 rates, nor MI. Conclusions. MI and necrosis are reliable markers for the assessment of lung NETs aggressiveness. MI is statistically associated with metastatic lesion, while extensive necrosis – with survival rates. Ki-67 expression was significantly associated with MI. No significant association of Ki-67 and PHH3 expression, tumor’s morphological features, disease progression and prognosis was found. Contrary to our expectations, PHH3 showed no diagnostic and prognostic value in lung NETs.


2021 ◽  
Vol 22 (15) ◽  
pp. 7945
Author(s):  
Konstantinos Kapetanos ◽  
Dimitrios Asimakopoulos ◽  
Neophytos Christodoulou ◽  
Antonia Vogt ◽  
Wasim Khan

The use of mesenchymal stromal cells (MSCs) in regenerative medicine and tissue engineering is well established, given their properties of self-renewal and differentiation. However, several studies have shown that these properties diminish with age, and understanding the pathways involved are important to provide regenerative therapies in an ageing population. In this PRISMA systematic review, we investigated the effects of chronological donor ageing on the senescence of MSCs. We identified 3023 studies after searching four databases including PubMed, Web of Science, Cochrane, and Medline. Nine studies met the inclusion and exclusion criteria and were included in the final analyses. These studies showed an increase in the expression of p21, p53, p16, ROS, and NF-κB with chronological age. This implies an activated DNA damage response (DDR), as well as increased levels of stress and inflammation in the MSCs of older donors. Additionally, highlighting the effects of an activated DDR in cells from older donors, a decrease in the expression of proliferative markers including Ki67, MAPK pathway elements, and Wnt/β-catenin pathway elements was observed. Furthermore, we found an increase in the levels of SA-β-galactosidase, a specific marker of cellular senescence. Together, these findings support an association between chronological age and MSC senescence. The precise threshold for chronological age where the reported changes become significant is yet to be defined and should form the basis for further scientific investigations. The outcomes of this review should direct further investigations into reversing the biological effects of chronological age on the MSC senescence phenotype.


2021 ◽  
Vol 43 (2) ◽  
pp. 802-817
Author(s):  
Piotr Rubisz ◽  
Lidia Hirnle ◽  
Christopher Kobierzycki

Uterine fibroids are the most common mesenchymal uterine neoplasms; their prevalence is estimated in 40%–60% of women under 35 and in 70%–80% of women over 50 years of age. The current research aims to focus on the etiopathogenesis of uterine fibroids, the factors that affect their growth, and markers with diagnostic and prognostic properties. The MCM (minichromosome maintenance) protein family consists of peptides whose primary function is participation in the molecular mechanism of creating replication forks while regulating DNA synthesis. The aim of this work was to determine the proliferative potential of uterine fibroid cells based on the expression of the Ki-67 antigen and the MCMs—i.e., MCM-3, MCM-5, and MCM-7. In addition, the expression of estrogen (ER) and progesterone (PgR) receptors was evaluated and correlated with the expression of the abovementioned observations. Ultimately, received results were analyzed in terms of clinical and pathological data. Materials and methods: In forty-four cases of uterine fibroids, immunohistochemical reactions were performed. A tissue microarray (TMA) technique was utilized and analyzed cases were assessed in triplicate. Immunohistochemistry was performed using antibodies against Ki-67 antigen, ER, PgR, MCM-3, MCM-5, and MCM-8 on an automated staining platform. Reactions were digitalized by a histologic scanner and quantified utilizing dedicated software for nuclear analysis. Assessment was based on quantification expression of the three histiospots, each representing one case in TMA. Results: In the study group (uterine fibroids), statistically significant stronger expression of all the investigated MCMs was observed, as compared to the control group. In addition, moderate and strong positive correlations were found between all tested proliferative markers. The expression of the MCM-7 protein also correlated positively with ER and PgR. With regard to clinical and pathological data, there was a negative correlation between the expression of MCMs and the number of both pregnancies and births. Significant reductions in MCM-5 and MCM-7 expression were observed in the group of women receiving oral hormonal contraceptives, while smoking women showed an increase in MCM-7, ER, and PgR. Conclusions: Uterine fibroid cells have greater proliferative potential, as evaluated by expression of the Ki-67 antigen and MCMs, than unaltered myometrial cells of the uterine corpus. The expression of MCM-7 was found to have strong or moderate correlations in all assessed relations. In the context of the clinical data, as well evident proliferative potential of MCMs, further studies are strongly recommended.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jamunarani Veeraraghavan ◽  
Carolina Gutierrez ◽  
Vidyalakshmi Sethunath ◽  
Sepideh Mehravaran ◽  
Mario Giuliano ◽  
...  

AbstractLapatinib (L) plus trastuzumab (T), with endocrine therapy for estrogen receptor (ER)+ tumors, but without chemotherapy, yielded meaningful response in HER2+ breast cancer (BC) neoadjuvant trials. The irreversible/pan-HER inhibitor neratinib (N) has proven more potent than L. However, the efficacy of N+T in comparison to pertuzumab (P) + T or L + T (without chemotherapy) remains less studied. To address this, mice bearing HER2+ BT474-AZ (ER+) cell and BCM-3963 patient-derived BC xenografts were randomized to vehicle, N, T, P, N+T, or P+T, with simultaneous estrogen deprivation for BT474-AZ. Time to tumor regression/progression and incidence/time to complete response (CR) were determined. Changes in key HER pathway and proliferative markers were assessed by immunohistochemistry and western blot of short-term-treated tumors. In the BT474-AZ model, while all N, P, T, N + T, and P + T treated tumors regressed, N + T-treated tumors regressed faster than P, T, and P + T. Further, N + T was superior to N and T alone in accelerating CR. In the BCM-3963 model, which was refractory to T, P, and P + T, while N and N + T yielded 100% CR, N + T accelerated the CR compared to N. Ki67, phosphorylated (p) AKT, pS6, and pERK levels were largely inhibited by N and N + T, but not by T, P, or P + T. Phosphorylated HER receptor levels were also markedly inhibited by N and N + T, but not by P + T or L + T. Our findings establish the efficacy of combining N with T and support clinical testing to investigate the efficacy of N + T with or without chemotherapy in the neoadjuvant setting for HER2+ BC.


Author(s):  
Nirmala Subramaniam ◽  
Pugazhendhi Kannan ◽  
Jagan Sundaram ◽  
Ashok Mari ◽  
Sathesh K. Velli ◽  
...  

Background: To evaluate the chemopreventive potential of boldine against diethylnitrosamine (DEN) induced hepatocellular carcinoma (HCC) in wistar albino rats. Objective: Boldine is an alkaloid isolated from Peumus boldus. The primary active constituents of boldine exhibited several potential medicinal properties. The present study was evaluated to explore the chemopreventive agent of boldine on anti-proliferative efficacy against diethylnitrosamine (DEN) induced hepatocellular carcinoma (HCC) in wistar albino rats. Methods: The effect of boldine on cellular proliferative markers, i.e., PCNA and Ki67 on hepatocellular carcinoma rats was determined by immuno expression study. Liver marker enzymes, tumor biomarker, oxidative stress markers, anti-oxidant status and xenobiotic phase I and II enzymes in HCC rats were analyzed. Moreover, cell cycle proteins, i.e., p21Cip1/Kip1, p27 Cip1/Kip1, Cyclin D1, CDK 4, Cyclin E1, and CDK 2 were investigated using immuno expression analysis. Results: Treatment of boldine protected the liver against reactive oxygen species such as hydrogen peroxide, superoxide, protein carbonyl and lipid peroxide during hepatocarcinogenesis by boosted antioxidants-superoxide dismutase (SOD), catalase (CAT). Boldine caused substantial enhanced detoxification process by moderating phase I and II xenobiotic metabolizing enzymes. In addition, the study was found that boldine significantly inhibited the cellular proliferative markers like PCNA and Ki67 and regulated the specific cell cycle associated proteins by up-regulated expression of p21Cip1/Kip1 and p27 Cip1/Kip1 and down-regulated expression of Cyclin D1, CDK 4, Cyclin E1, and CDK 2. Conclusion: Our data manifests the anti-proliferative effect of boldine, which negatively modulates cellular proliferation and regulates cell cycle by protecting the cell from reactive oxygen species (ROS), suggesting that boldine establish it as a chemopreventive agent in diethylnitrosamine-induced hepatocarcinogenesis in rats.


2021 ◽  
Author(s):  
Robert M. Harmon ◽  
John Devany ◽  
Margaret L. Gardel

AbstractAlthough implicated in adhesion, few studies address how actin assembly factors guide cell positioning in multicellular tissue. The formin, Dia1, localizes to the proliferative basal layer of epidermis. In organotypic cultures, Dia1 depletion reduced basal cell density and resulted in stratified tissue with disorganized differentiation and proliferative markers. Since crowding induces differentiation in epidermal tissue, we hypothesized that Dia1 allows cells to reach densities amenable to differentiation prior to stratification. Consistent with this hypothesis, forced crowding of Dia1-deficient cells rescued transcriptional abnormalities. Dia1 promotes rapid growth of lateral adhesions, a behavior consistent with the ability of cells to remain monolayered when crowded. In aggregation assays, cells sorted into distinct layers based on Dia1 expression status. These results suggested that as basal cells proliferate, reintegration and packing of Dia1-positive daughter cells is favored while Dia1-negative cells tend to delaminate to a suprabasal compartment. These data demonstrate how formin expression patterns play a crucial role in constructing distinct domains within stratified epithelia.SummaryHarmon et al demonstrate that differential expression of an actin nucleator, the formin, Dia1, drives cell sorting and maintains distinct morphological domains within an epithelial tissue. This illuminates the possible utility of evolving a large formin family in orchestrating the compartmentalization and differentiation of complex tissues.


2021 ◽  
Vol 12 (9) ◽  
pp. 2498-2506
Author(s):  
Jianping Yang ◽  
Chunjun Li ◽  
Yong Tang ◽  
Fang Guo ◽  
Yu Chen ◽  
...  

2020 ◽  
pp. 095646242096194
Author(s):  
Marialuisa Corbeddu ◽  
Luca Pilloni ◽  
Roberta Satta ◽  
Laura Atzori ◽  
Franco Rongioletti

We report two cases of histologically documented pseudoepitheliomatous keratotic and micaceous balanitis in middle-aged male patients, which showed positivity for low-risk serotype human papillomavirus DNA. To our knowledge, only one other case has been documented. Further immunohistochemical proliferative markers were performed and compared to literature findings in penile epithelial proliferations. Evolution to invasive verrucous carcinoma has been associated with absence of HPV DNA. Thus, if confirmed by further studies, HPV testing should be included in pseudoepitheliomatous keratotic and micaceous balanitis assessment to address prognosis, and management.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hera Saqub ◽  
Hannah Proetsch-Gugerbauer ◽  
Vladimir Bezrookove ◽  
Mehdi Nosrati ◽  
Edith M. Vaquero ◽  
...  

Abstract Cholangiocarcinoma (CCA) is a highly invasive cancer, diagnosed at an advanced stage, and refractory to surgical intervention and chemotherapy. Cyclin-dependent kinases (CDKs) regulate cell cycle progression and transcriptional processes, and are considered potential therapeutic targets for cancer. Dinaciclib is a small molecule multi-CDK inhibitor targeting CDK 2/5/9. In this study, the therapeutic efficacy of dinaciclib was assessed using patient-derived xenograft cells (PDXC) and CCA cell lines. Treatment with dinaciclib significantly suppressed cell proliferation, induced caspase 3/7 levels and apoptotic activity in PDXC and CCA cell lines. Dinaciclib suppressed expression of its molecular targets CDK2/5/9, and anti-apoptotic BCL-XL and BCL2 proteins. Despite the presence of cyclin D1 amplification in the PDXC line, palbociclib treatment had no effect on cell proliferation, cell cycle or apoptosis in the PDXC as well as other CCA cell lines. Importantly, dinaciclib, in combination with gemcitabine, produced a robust and sustained inhibition of tumor progression in vivo in a PDX mouse model, greater than either of the treatments alone. Expression levels of two proliferative markers, phospho-histone H3 and Ki-67, were substantially suppressed in samples treated with the combination regimen. Our results identify dinaciclib as a novel and potent therapeutic agent alone or in combination with gemcitabine for the treatment of CCA.


Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 157
Author(s):  
Young-Ji Hwang ◽  
Jung-Im Na ◽  
Sang-Young Byun ◽  
Soon-Hyo Kwon ◽  
Seung-Hye Yang ◽  
...  

Abnormal histone modification by histone deacetylases (HDACs), including HDAC1 and sirtuin 1 (SIRT1), has been reported to play an important role in the pathogenesis of psoriasis by altering cell proliferation, differentiation, and inflammation. However, findings on the expression level of HDACs in psoriatic skin lack consistency. We assessed the expression of HDAC1, SIRT1, p63, and proliferating cell nuclear antigen (PCNA) in skin tissues from 23 patients with psoriasis (15 with plaque psoriasis and eight with guttate psoriasis) and five healthy individuals using immunohistochemistry, and analyzed their associations with clinical phenotypes of the disease. The expression of HDAC1 and keratinocyte proliferative markers, such as p63 and PCNA significantly increased, whereas that of SIRT1 decreased in the basal layer (p < 0.05) of the patients with psoriasis compared to those in healthy controls. Among the patients with psoriasis, expression of HDAC1, p63, and PCNA was significantly higher in plaque psoriasis than in guttate psoriasis. There was no significant differences in the level of SIRT1 between the two clinical phenotypes. The findings of this study suggest that histone modifications are involved in the pathogenesis of psoriasis and may contribute to the formation of clinical phenotypes.


Sign in / Sign up

Export Citation Format

Share Document