cell processes
Recently Published Documents


TOTAL DOCUMENTS

615
(FIVE YEARS 135)

H-INDEX

71
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Eugeny A. Elisaphenko ◽  
Anastasia A. Malakhova

Antisense transcription is an important mechanism of gene expression regulation. Antisense RNAs play a role in mRNA processing, translation and epigenetic modifications of DNA and histones in the locus of their origin, leading to gene silencing. HTT is a widely expressed gene, the mutation of which causes Huntington’s disease. The product of the gene plays an important role in many cell processes, such as intracellular trafficking, cell division, autophagy, and others. An antisense transcription has been found at the HTT 5’-region. The HTT-AS gene has been reported to affect HTT expression in a Dicer-dependent manner. In this study, we analyzed extensive data from RNA-seq experiments for antisense transcription at the HTT locus. Antisense transcripts corresponding to the HTT-AS gene were not found. However, we revealed a number of antisense transcripts in different parts of the locus that may take part in the regulation and functioning of the HTT gene. Keywords: antisense transcription, HTT-AS, HTTregulation, Huntington’s disease


2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Megan R. Ridgway ◽  
Louise Tunnah ◽  
Nicholas J. Bernier ◽  
Jonathan M. Wilson ◽  
Patricia A. Wright

Cortisol is a major osmoregulatory hormone in fishes. Cortisol acts upon the gills, the primary site of ionoregulation, through modifications to specialized ion-transporting cells called ionocytes. We tested the hypothesis that cortisol also acts as a major regulator of skin ionocyte remodelling in the amphibious mangrove rivulus ( Kryptolebias marmoratus ) when gill function ceases during the water-to-land transition. When out of water, K. marmoratus demonstrated a robust cortisol response, which was linked with the remodelling of skin ionocytes to increase cell cross-sectional area and Na + -K + -ATPase (NKA) content, but not when cortisol synthesis was chemically inhibited by metyrapone. Additionally, we discovered a novel morphology of skin-specific ionocyte that are spikey with multiple cell processes. Spikey ionocytes increased in density, cell cross-sectional area and NKA content during air exposure, but not in metyrapone-treated fish. Our findings demonstrate that skin ionocyte remodelling during the water-to-land transition in amphibious fish is regulated by cortisol, the same hormone that regulates gill ionocyte remodelling in salinity-challenged teleosts, suggesting conserved hormonal function across diverse environmental disturbances and organs in fishes.


2021 ◽  
Author(s):  
Stratigoula Sakellariou ◽  
Μarina Perdiki ◽  
Kostas Palamaris ◽  
Giorgos Bamias ◽  
Ioanna Delladetsima

Abstract Aims The subepithelial myofibroblasts (SEMFs) and the subepithelial band of macrophages (SEBM) are major components of the colonic mucosa barrier. Although their role in homeostasis is widely recognized, their contribution to disease states is largely unknown. The aim of the study was to explore histological characteristics of SEMFs and SEBM in collagenous and ischemic colitis.Methods Ten colonic biopsies of collagenous colitis, 10 of ischemic colitis and 10 control biopsies of normal mucosa were examined. SEMFs, SEBM and lamina propria macrophages were identified immunohistochemically by aSMA and CD68 respectively.ResultsIn collagenous colitis, SEMFs were rarely detectable in the collagenous band while in the lower lamina propria cell processes were formed. SEBM was preserved in areas with a collagenous layer up to 20μm. In thicker layers, it was fragmented and gradually disappeared in parallel with engulfment of enlarged macrophages. In the lower lamina propria macrophages were usually increased.In ischemic colitis, rounding, disintegration and extinction of SEMFs constituted successive alterations coinciding with crypt shrinkage and denudation. SEBM displayed total or almost total abolishment in areas with crypt damage and stroma fibrosis but also in sights with minimal changes.ConclusionIn collagenous colitis, alterations of mucosa barrier are related to collagenous layer thickness. SEMFs changes probably reflect derangement of differentiation and migration while SEMB alterations seem to be compensated by macrophage activation and numerical increase in lamina propria. The striking damage of mucosa barrier in ischemic colitis is indicative of its high sensitivity to hypoxia and hypoperfusion. The histological differences between collagenous colitis and ischemic colitis may be proven of differential diagnostic significance.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 901
Author(s):  
Paweena Chaoprasid ◽  
Petra Dersch

The cytotoxic necrotizing factors (CNFs) are a family of Rho GTPase-activating single-chain exotoxins that are produced by several Gram-negative pathogenic bacteria. Due to the pleiotropic activities of the targeted Rho GTPases, the CNFs trigger multiple signaling pathways and host cell processes with diverse functional consequences. They influence cytokinesis, tissue integrity, cell barriers, and cell death, as well as the induction of inflammatory and immune cell responses. This has an enormous influence on host–pathogen interactions and the severity of the infection. The present review provides a comprehensive insight into our current knowledge of the modular structure, cell entry mechanisms, and the mode of action of this class of toxins, and describes their influence on the cell, tissue/organ, and systems levels. In addition to their toxic functions, possibilities for their use as drug delivery tool and for therapeutic applications against important illnesses, including nervous system diseases and cancer, have also been identified and are discussed.


2021 ◽  
Vol 22 (24) ◽  
pp. 13186
Author(s):  
Jason Abbas Aramideh ◽  
Andres Vidal-Itriago ◽  
Marco Morsch ◽  
Manuel B. Graeber

Microglial cell processes form part of a subset of synaptic contacts that have been dubbed microglial tetra-partite or quad-partite synapses. Since tetrapartite may also refer to the presence of extracellular matrix components, we propose the more precise term microglial penta-partite synapse for synapses that show a microglial cell process in close physical proximity to neuronal and astrocytic synaptic constituents. Microglial cells are now recognised as key players in central nervous system (CNS) synaptic changes. When synaptic plasticity involving microglial penta-partite synapses occurs, microglia may utilise their cytokine arsenal to facilitate the generation of new synapses, eliminate those that are not needed anymore, or modify the molecular and structural properties of the remaining synaptic contacts. In addition, microglia–synapse contacts may develop de novo under pathological conditions. Microglial penta-partite synapses have received comparatively little attention as unique sites in the CNS where microglial cells, cytokines and other factors they release have a direct influence on the connections between neurons and their function. It concerns our understanding of the penta-partite synapse where the confusion created by the term “neuroinflammation” is most counterproductive. The mere presence of activated microglia or the release of their cytokines may occur independent of inflammation, and penta-partite synapses are not usually active in a neuroimmunological sense. Clarification of these details is the main purpose of this review, specifically highlighting the relationship between microglia, synapses, and the cytokines that can be released by microglial cells in health and disease.


2021 ◽  
Vol 9 (12) ◽  
pp. 2459
Author(s):  
Imrich Barák

Bacillus subtilis has served as a model microorganism for many decades [...]


2021 ◽  
Vol 12 ◽  
Author(s):  
Andres M. Cardozo Gizzi

The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into “territories,” epigenetically-defined large domains of chromatin that interact to form “compartments” with common transcriptional status, and insulator-flanked domains called “topologically associating domains” (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled “chromatin tracing.” Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of “spatial genomics.” As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.


2021 ◽  
Author(s):  
◽  
Vaughan Trounson

<p>The genus Bartonellae represents an increasing number of emerging bacterial pathogens that utilises an unusual infection strategy, parasitising the red blood cells of their mammalian host. The most common species to infect humans are B. henselae and B. quintana. B. henselae is transmitted between cats by the cat flea, although occasionally infects humans via cat scratches or bites, causing cat-scratch disease (CSD). CSD is characterised by enlarged tender lymph nodes and fever. B. henselae also infects the endothelial cells of both its hosts; likely a factor in disease progression. B. quintana, the cause of trench fever during WWI, is spread people by the body louse. Trench fever is characterised by relapsing fever, headache, and bone pain. B. quintana is also able to infect human endothelial cells. These bacteria secrete a range of Bartonella effector proteins (Beps) via a Type IV secretion system, directly into endothelial cells, subverting host cell processes and resulting in internalisation of the bacteria.  Beps have a range of functions, many of which are not fully characterised. B. henselae secretes three Beps (BepA-C) that contain a filamentation induced by cAMP (Fic) domain and a Bartonella Intracellular Delivery (BID) domain, with BepA being the best studied. BepA’s BID domain is responsible for intracellular delivery as well as inhibition of apoptosis by the host cell, however the exact function of the Fic domain remains unknown. Fic-containing bacterial toxins catalyse the transfer of an AMP moiety from ATP onto a host cell protein. This AMPylation frequently inactivates these proteins resulting in disrupted host cell processes and cytotoxicity. BepA has previously been shown to possess AMPylation activity, although the host target protein(s) are unknown. Evidence suggests that these proteins are novel targets.  The aim of this study was to create protein constructs containing these Fic domains, and to develop techniques to identify the host cell target proteins post AMPylation. To this end, both a fluorescent ATP analogue and a fluorescent click chemistry based approach were utilised. While no target protein was identified, a basic methodology was developed for protein production and target protein identification that could be further developed.</p>


Sign in / Sign up

Export Citation Format

Share Document