line intensities
Recently Published Documents


TOTAL DOCUMENTS

995
(FIVE YEARS 72)

H-INDEX

52
(FIVE YEARS 4)

2021 ◽  
Vol 923 (2) ◽  
pp. L27
Author(s):  
N. Sulzenauer ◽  
H. Dannerbauer ◽  
A. Díaz-Sánchez ◽  
B. Ziegler ◽  
S. Iglesias-Groth ◽  
...  

Abstract Based on observations with the IRAM 30 m and Yebes 40 m telescopes, we report evidence of the detection of Milky Way–like, low-excitation molecular gas, up to the transition CO(J = 5–4), in a distant, dusty star-forming galaxy at z CO = 1.60454. WISE J122651.0+214958.8 (alias SDSS J1226, the Cosmic Seahorse), is strongly lensed by a foreground galaxy cluster at z = 0.44 with a source magnification of μ = 9.5 ± 0.7. This galaxy was selected by cross-correlating near-to-mid-infrared colors within the full-sky AllWISE survey, originally aiming to discover rare analogs of the archetypical strongly lensed submillimeter galaxy SMM J2135–0102, the Cosmic Eyelash. We derive an apparent (i.e., not corrected for lensing magnification) rest-frame 8–1000 μm infrared luminosity of μ L IR = 1.66 − 0.04 + 0.04 × 10 13 L ⊙ and apparent star formation rate μSFRIR = 2960 ± 70 M ⊙ yr−1. SDSS J1226 is ultrabright at S 350μm ≃ 170 mJy and shows similarly bright low-J CO line intensities as SMM J2135–0102, however, with exceptionally small CO(J = 5–4) intensity. We consider different scenarios to reconcile our observations with typical findings of high-z starbursts, and speculate about the presence of a previously unseen star formation mechanism in cosmic noon submillimeter galaxies. In conclusion, the remarkable low line luminosity ratio r 5,2 = 0.11 ± 0.02 is best explained by an extended, main-sequence star formation mode—representing a missing link between starbursts to low-luminosity systems during the epoch of peak star formation history.


Author(s):  
B. Zakirov ◽  
M. Zhumanova ◽  
D. Isabaev ◽  
S. Zhumadullaeva

Solubility in the ternary system manganese sulfate - monoethanolamine - water at 25°C was studied by isothermal method. The equilibrium in the system was controlled by liquid phase analysis. True equilibrium in the system was established within 7 hours. The new compound was isolated in crystalline form and identified by the methods of chemical, graphic, X-ray and thermal analyses. It was found that the new compound is a crystalline substance with an individual set of interplanar distances and line intensities. The formation of the new compound NH2C2H4ON-MnSO4-3H2O which was identified by the methods of chemical, graphic and X-ray analyses has been established. Preliminary agrochemical tests of aqueous solution of the new compound showed its positive properties as a stimulant.


Author(s):  
A F Monteiro ◽  
O L Dors

Abstract For the first time, the argon abundance relative to hydrogen abundance (Ar/H) in the narrow line region of a sample of Seyfert 2 nuclei has been derived. In view of this, optical narrow emission line intensities of a sample of 64 local Seyfert 2 nuclei (z < 0.25) taken from Sloan Digital Sky Survey DR7 and measured by the MPA/JHU group were considered. We adopted the Te-method for AGNs, which is based on direct determination of the electron temperature, together with a grid of photoionization model results, built with the Cloudy code, to obtain a method for the derivation of the Ar/H abundance. We find that for a metallicity range of $\rm 0.2 \: \lesssim \: (Z/{\rm Z_{\odot }}) \: \lesssim \: 2.0$, Seyfert 2 nuclei present Ar/H abundance ranging from ∼0.1 to ∼3 times the argon solar value, adopting $\rm log(O/H)_{\odot }=-3.31$ and $\rm log(Ar/H)_{\odot }=-5.60$. These range of values correspond to $\rm 8.0 \: \lesssim \: (12+log(O/H) \: \lesssim \: 9.0$ and $\rm 5.4 \: \lesssim \: (12+log(Ar/H) \: \lesssim \: 6.9$, respectively. The range of Ar/H and Ar/O abundance values obtained from our sample are in consonance with estimations from extrapolations of the radial abundance gradients to the central parts of the disk for four spiral galaxies. We combined our abundance results with estimates obtained from a sample of H ii galaxies, which were taken from the literature, and found that the Ar/O abundance ratio decreases slightly as the O/H abundance increases.


Author(s):  
O. Ben Fathallah ◽  
F. Hmida ◽  
A. Boughdiri ◽  
L. Manceron ◽  
M. Rotger ◽  
...  
Keyword(s):  

2021 ◽  
Vol 87 (6) ◽  
pp. 20-24
Author(s):  
T. A. Karimova ◽  
G. L. Buchbinder ◽  
N. Romanov ◽  
S. V. Kachin

A method for the analysis of iron ore raw materials (IORM) using inductively coupled plasma atomic- emission spectrometry (ICP-AES) and Concentration Ratio Calibration (CRC) has been developed. However, the general eq. for calibration by concentration ratios used in analysis of metals and alloys was modified with allowance for the IORM characteristics: all the elements, except sulfur, were represented as oxides, iron was represented as FeO and Fe2O3, and the total of 100% included ignition losses (LOI). A variant of solving the equation is proposed, which allowed us to relate the relative concentrations of the components (the ratios of the mass fraction of the determined components to the mass fraction of iron oxide) to the ratio of the line intensities of the certain element and iron line measured on a spectrometer. The equation takes into account the content of FeO and LOI, which are determined by standard methods of analysis. A method for acid decomposition of the samples in autoclaves heated in a HotBlock 200 system is proposed: a sample weight of 0.25 g was decomposed in closed vessels at a temperature of 150 – 180°C in the mixture of HCl, HF and HNO3. The following components were determined in concentrates and pellets: Fe2O3, Fetot, Al2O3, CaO, Cr2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2, TiO2, Co, Cu, Mo, Ni, Pb, S, V, Zn. The correctness of the developed method is confirmed by the analysis of SS of iron ore and iron concentrates, as well as by comparison with the results obtained by standardized methods. The proposed technique provides iron determination in iron ore raw materials with an accuracy no worse than that specified in GOST 23581, all other components are determined in a wider range of contents and with a higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document