metabolic stress
Recently Published Documents


TOTAL DOCUMENTS

1622
(FIVE YEARS 553)

H-INDEX

81
(FIVE YEARS 13)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hidenori Machino ◽  
Syuzo Kaneko ◽  
Masaaki Komatsu ◽  
Noriko Ikawa ◽  
Ken Asada ◽  
...  

AbstractHigh-grade serous ovarian carcinoma (HGSOC) is the most aggressive gynecological malignancy, resulting in approximately 70% of ovarian cancer deaths. However, it is still unclear how genetic dysregulations and biological processes generate the malignant subtype of HGSOC. Here we show that expression levels of microtubule affinity-regulating kinase 3 (MARK3) are downregulated in HGSOC, and that its downregulation significantly correlates with poor prognosis in HGSOC patients. MARK3 overexpression suppresses cell proliferation and angiogenesis of ovarian cancer cells. The LKB1-MARK3 axis is activated by metabolic stress, which leads to the phosphorylation of CDC25B and CDC25C, followed by induction of G2/M phase arrest. RNA-seq and ATAC-seq analyses indicate that MARK3 attenuates cell cycle progression and angiogenesis partly through downregulation of AP-1 and Hippo signaling target genes. The synthetic lethal therapy using metabolic stress inducers may be a promising therapeutic choice to treat the LKB1-MARK3 axis-dysregulated HGSOCs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Sueziani Binte Zainudin ◽  
Dee Dee A. Salle ◽  
Abdul Rashid Aziz

Concurrent exercise and intermittent fasting regimens for long periods have been shown to enhance cardiometabolic health in healthy individuals. As exercise and fasting confer health benefits independently, we propose that Muslims who are fasting, especially those experiencing health and clinical challenges, continually engage in physical activity during the Ramadan month. In this opinion piece, we recommend walking football (WF) as the exercise of choice among Muslims who are fasting. WF can be played by any individual regardless of the level of fitness, skills, and age. WF has been shown to elicit cardiovascular and metabolic stress responses, which are suitable for populations with low fitness levels. Most importantly, WF has the inherent characteristics of being a fun team activity requiring social interactions among participants and, hence, likely to encourage long-term consistent and sustainable participation.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Elite Possik ◽  
Clémence Schmitt ◽  
Anfal Al-Mass ◽  
Ying Bai ◽  
Laurence Côté ◽  
...  

AbstractMetabolic stress due to nutrient excess and lipid accumulation is at the root of many age-associated disorders and the identification of therapeutic targets that mimic the beneficial effects of calorie restriction has clinical importance. Here, using C. elegans as a model organism, we study the roles of a recently discovered enzyme at the heart of metabolism in mammalian cells, glycerol-3-phosphate phosphatase (G3PP) (gene name Pgp) that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol. We identify three Pgp homologues in C. elegans (pgph) and demonstrate in vivo that their protein products have G3PP activity, essential for glycerol synthesis. We demonstrate that PGPH/G3PP regulates the adaptation to various stresses, in particular hyperosmolarity and glucotoxicity. Enhanced G3PP activity reduces fat accumulation, promotes healthy aging and acts as a calorie restriction mimetic at normal food intake without altering fertility. Thus, PGP/G3PP can be considered as a target for age-related metabolic disorders.


2022 ◽  
pp. 1-21
Author(s):  
Mamta Rai ◽  
Fabio Demontis

Skeletal muscle health and function are important determinants of systemic metabolic homeostasis and organism-wide responses, including disease outcome. While it is well known that exercise protects the central nervous system (CNS) from aging and disease, only recently this has been found to depend on the endocrine capacity of skeletal muscle. Here, we review muscle-secreted growth factors and cytokines (myokines), metabolites (myometabolites), and other unconventional signals (e.g. bioactive lipid species, enzymes, and exosomes) that mediate muscle-brain and muscle-retina communication and neuroprotection in response to exercise and associated processes, such as the muscle unfolded protein response and metabolic stress. In addition to impacting proteostasis, neurogenesis, and cognitive functions, muscle-brain signaling influences complex brain-dependent behaviors, such as depression, sleeping patterns, and biosynthesis of neurotransmitters. Moreover, myokine signaling adapts feeding behavior to meet the energy demands of skeletal muscle. Contrary to protective myokines induced by exercise and associated signaling pathways, inactivity and muscle wasting may derange myokine expression and secretion and in turn compromise CNS function. We propose that tailoring muscle-to-CNS signaling by modulating myokines and myometabolites may combat age-related neurodegeneration and brain diseases that are influenced by systemic signals.


Author(s):  
Radmila Capkova Frydrychova

Telomerase activity and telomere restoration in certain somatic cells of human adults maintain the proliferative capacity of these cells and contribute to their regenerative potential, and telomerase activity and telomere length are commonly considered lifespan predictors. Eusocial insects provide excellent model systems for aging research based on their extraordinary caste-related lifespan differences that contradict the typical fecundity/lifespan trade-off. In agreement with the common presumption, telomerase activity is upregulated in the reproductive, long-lived individuals of eusocial insects such as queens and kings, proposing that telomerase activity acts as a key factor in their extended longevity. But, as documented by the presence of telomerase in somatic tissues of numerous invertebrate and vertebrate species, the connection between telomerase activity and the predicted lifespan is not clear. Here, I ask whether somatic telomerase activity in eusocial reproductives may serve its non-canonical function to protect its individuals against the exacerbated metabolic stress upon reproduction and be a reflection of a more common phenomenon among species. I propose a hypothesis that the presence of telomerase activity in somatic cells reflects a different reproduction strategy of the species.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Aundrea K. Westfall ◽  
Blair W. Perry ◽  
Abu H. M. Kamal ◽  
Nicole R. Hales ◽  
Jarren C. Kay ◽  
...  

Abstract Background Snakes exhibit extreme intestinal regeneration following months-long fasts that involves unparalleled increases in metabolism, function, and tissue growth, but the specific molecular control of this process is unknown. Understanding the mechanisms that coordinate these regenerative phenotypes provides valuable opportunities to understand critical pathways that may control vertebrate regeneration and novel perspectives on vertebrate regenerative capacities. Results Here, we integrate a comprehensive set of phenotypic, transcriptomic, proteomic, and phosphoproteomic data from boa constrictors to identify the mechanisms that orchestrate shifts in metabolism, nutrient uptake, and cellular stress to direct phases of the regenerative response. We identify specific temporal patterns of metabolic, stress response, and growth pathway activation that direct regeneration and provide evidence for multiple key central regulatory molecules kinases that integrate these signals, including major conserved pathways like mTOR signaling and the unfolded protein response. Conclusion Collectively, our results identify a novel switch-like role of stress responses in intestinal regeneration that forms a primary regulatory hub facilitating organ regeneration and could point to potential pathways to understand regenerative capacity in vertebrates.


2022 ◽  
Author(s):  
Jae Seung Chang ◽  
Jhii-Hyun Ahn ◽  
Seong Hee Kang ◽  
Sang-Baek Koh ◽  
Jang-Young Kim ◽  
...  

Abstract Background Mitochondrial dysfunction with oxidative stress contributes to nonalcoholic fatty liver disease (NAFLD) progression. We investigated the steatosis predictive efficacy of a novel non-invasive diagnostic panel using metabolic stress biomarkers. Methods Altogether, 343 subjects who underwent magnetic resonance imaging-based liver examinations from a population-based general cohort, and 41 patients enrolled in a biopsy-evaluated NAFLD cohort, participated in the development and validation groups, respectively. Serologic stress biomarkers were quantitated by enzyme-linked immunosorbent assay. Results Multivariate regression showed that waist-to-hip ratio, fibroblast growth factor (FGF) 21, FGF19, adiponectin-to-leptin ratio, insulin, albumin, triglyceride, total-cholesterol, and alanine-aminotransferase were independent predictors of steatosis (rank-ordered by Wald). The area under receiver-operator characteristics curve [AUROC (95%CI)] of the metabolic stress index for steatosis (MSI-S) was 0.886 (0.85‒0.92) and 0.825 (0.69‒0.96) in development and validation groups, respectively. MSI-S had higher diagnostic accuracy (78.1%‒81.1%) than other steatosis indices. MSI-S notably differentiated steatosis severities, while other indices showed less discrimination. Conclusion MSI-S, as a novel non-invasive index, based on mitochondrial stress biomarker FGF21 effectively predicted steatosis. Furthermore, MSI-S may increase the population that could be excluded from further evaluation, reducing unnecessary invasive investigations more effectively than other indices.


2021 ◽  
Author(s):  
Michelle Wintzinger ◽  
Manoj Panta ◽  
Karen Miz ◽  
Ashok D.P. Pragasam ◽  
Michelle Sargent ◽  
...  

Bioenergetic capacity is critical to adapt the high energy demand of the heart to circadian oscillations and diseased states. Glucocorticoids regulate the circadian cycle of energy metabolism, but little is known about how circadian timing of exogenous glucocorticoid dosing directly regulates cardiac bioenergetics through the primary receptor of these drugs, the glucocorticoid receptor (GR). While chronic once-daily intake of glucocorticoids promotes metabolic stress and heart failure, we recently discovered that intermittent once-weekly dosing of exogenous glucocorticoids promoted muscle metabolism and heart function in dystrophic mice. However, the effects of glucocorticoid intermittence on heart failure beyond muscular dystrophy remain unknown. Here we investigated the extent to which circadian time of dosing regulates the cardiac-autonomous effects of the glucocorticoid prednisone in conditions of single pulse or chronic intermittent dosing. In WT mice, we found that prednisone improved cardiac content of NAD+ and ATP with light-phase dosing (ZT0), while the effects were blocked by dark-phase dosing (ZT12). The effects on mitochondrial function were cardiomyocyte-autonomous, as shown by inducible cardiomyocyte-restricted GR ablation, and depended on an intact activating clock complex, as shown by hearts from BMAL1-KO mice. Conjugating time-of-dosing with chronic intermittence, we found that once-weekly light-phase prednisone improved metabolism and function in heart after myocardial injury. Our study identifies cardiac-autonomous mechanisms through which circadian time and chronic intermittence reconvert glucocorticoid drugs to bioenergetic boosters for the heart.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yan Zhao ◽  
You-Shuo Liu

Forkhead box O3 (FOXO3) has been proposed as a homeostasis regulator, capable of integrating multiple upstream signaling pathways that are sensitive to environmental changes and counteracting their adverse effects due to external changes, such as oxidative stress, metabolic stress and growth factor deprivation. FOXO3 polymorphisms are associated with extreme human longevity. Intriguingly, longevity-associated single nucleotide polymorphisms (SNPs) in human FOXO3 correlate with lower-than-average morbidity from cardiovascular diseases in long-lived people. Emerging evidence indicates that FOXO3 plays a critical role in vascular aging. FOXO3 inactivation is implicated in several aging-related vascular diseases. In experimental studies, FOXO3-engineered human ESC-derived vascular cells improve vascular homeostasis and delay vascular aging. The purpose of this review is to explore how FOXO3 regulates vascular aging and its crucial role in aging-related vascular diseases.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1939
Author(s):  
Noemi Rotllan ◽  
Mercedes Camacho ◽  
Mireia Tondo ◽  
Elena M. G. Diarte-Añazco ◽  
Marina Canyelles ◽  
...  

Cardiovascular diseases are the leading cause of death worldwide. Aging and/or metabolic stress directly impact the cardiovascular system. Over the last few years, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism to aging and other pathological conditions closely related to cardiovascular diseases have been intensively investigated. NAD+ bioavailability decreases with age and cardiometabolic conditions in several mammalian tissues. Compelling data suggest that declining tissue NAD+ is commonly related to mitochondrial dysfunction and might be considered as a therapeutic target. Thus, NAD+ replenishment by either genetic or natural dietary NAD+-increasing strategies has been recently demonstrated to be effective for improving the pathophysiology of cardiac and vascular health in different experimental models, as well as human health, to a lesser extent. Here, we review and discuss recent experimental evidence illustrating that increasing NAD+ bioavailability, particularly by the use of natural NAD+ precursors, may offer hope for new therapeutic strategies to prevent and treat cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document