binary stars
Recently Published Documents


TOTAL DOCUMENTS

1645
(FIVE YEARS 196)

H-INDEX

64
(FIVE YEARS 10)

Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Dirk Terrell

Eclipsing binary stars have a rich history of contributing to the field of stellar astrophysics. Most of the available information on the fundamental properties of stars has come from the analysis of observations of binaries. The availability of powerful computers and sophisticated codes that apply physical models has resulted in determinations of masses and radii of sufficient accuracy to provide critical tests of theories of stellar structure and evolution. Despite their sophistication, these codes still require the guiding hand of trained scientists to extract reliable information. The computer code will produce results, but it is still imperative for the analyst to ensure that those results make astrophysical sense, and to ascertain their reliability. Care must be taken to ensure that we are asking the codes for parameters for which there is information in the data. The analysis of synthetic observations with simulated observational errors of typical size can provide valuable insight to the analysis process because the parameters used to generate the observations are known. Such observations are herein analyzed to guide the process of determining mass ratios and spot parameters from eclipsing binary light curves. The goal of this paper is to illustrate some of the subtleties that need to be recognized and treated properly when analyzing binary star data.


2022 ◽  
Vol 258 (1) ◽  
pp. 16
Author(s):  
Andrej Prša ◽  
Angela Kochoska ◽  
Kyle E. Conroy ◽  
Nora Eisner ◽  
Daniel R. Hey ◽  
...  

Abstract In this paper we present a catalog of 4584 eclipsing binaries observed during the first two years (26 sectors) of the TESS survey. We discuss selection criteria for eclipsing binary candidates, detection of hitherto unknown eclipsing systems, determination of the ephemerides, the validation and triage process, and the derivation of heuristic estimates for the ephemerides. Instead of keeping to the widely used discrete classes, we propose a binary star morphology classification based on a dimensionality reduction algorithm. Finally, we present statistical properties of the sample, we qualitatively estimate completeness, and we discuss the results. The work presented here is organized and performed within the TESS Eclipsing Binary Working Group, an open group of professional and citizen scientists; we conclude by describing ongoing work and future goals for the group. The catalog is available from http://tessEBs.villanova.edu and from MAST.


Author(s):  
K. Sen ◽  
N. Langer ◽  
P. Marchant ◽  
A. Menon ◽  
S. E. de Mink ◽  
...  
Keyword(s):  

2021 ◽  
Vol 923 (1) ◽  
pp. 47
Author(s):  
Hannah E. Brinkman ◽  
J. W. den Hartogh ◽  
C. L. Doherty ◽  
M. Pignatari ◽  
M. Lugaro

Abstract Radioactive nuclei were present in the early solar system (ESS), as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper of this series (Brinkman et al. 2019), we focused on the production of 26Al in massive binaries. Here, we focus on the production of another two short-lived radioactive nuclei, 36Cl and 41Ca, and the comparison to the ESS data. We used the MESA stellar evolution code with an extended nuclear network and computed massive (10–80 M ⊙), rotating (with initial velocities of 150 and 300 km s−1) and nonrotating single stars at solar metallicity (Z = 0.014) up to the onset of core collapse. We present the wind yields for the radioactive isotopes 26Al, 36Cl, and 41Ca, and the stable isotopes 19F and 22Ne. In relation to the stable isotopes, we find that only the most massive models, ≥60 and ≥40 M ⊙ give positive 19F and 22Ne yields, respectively, depending on the initial rotation rate. In relation to the radioactive isotopes, we find that the ESS abundances of 26Al and 41Ca can be matched with by models with initial masses ≥40 M ⊙, while 36Cl is matched only by our most massive models, ≥60 M ⊙. 60Fe is not significantly produced by any wind model, as required by the observations. Therefore, massive star winds are a favored candidate for the origin of the very short-lived 26Al, 36Cl, and 41Ca in the ESS.


2021 ◽  
Vol 923 (2) ◽  
pp. 270
Author(s):  
Hauyu Baobab Liu ◽  
An-Li Tsai ◽  
Wen Ping Chen ◽  
Jin Zhong Liu ◽  
Xuan Zhang ◽  
...  

Abstract Previous observations have shown that the ≲10 au, ≳400 K hot inner disk of the archetypal accretion outburst young stellar object, FU Ori, is dominated by viscous heating. To constrain dust properties in this region, we have performed radio observations toward this disk using the Karl G. Jansky Very Large Array in 2020 June–July, September, and November. We also performed complementary optical photometric monitoring observations. We found that the dust thermal emission from the hot inner disk mid-plane of FU Ori has been approximately stationary and the maximum dust grain size is ≳1.6 mm in this region. If the hot inner disk of FU Ori, which is inward of the 150–170 K water snowline, is turbulent (e.g., corresponding to a Sunyaev & Shakura viscous α t ≳ 0.1), or if the actual maximum grain size is still larger than the lower limit we presently constrain, then as suggested by the recent analytical calculations and the laboratory measurements, water-ice-free dust grains may be stickier than water-ice-coated dust grains in protoplanetary disks. Additionally, we find that the free–free emission and the Johnson B- and V-band magnitudes of these binary stars were brightening in 2016–2020. The optical and radio variability might be related to the dynamically evolving protostellar- or disk-accretion activities. Our results highlight that the hot inner disks of outbursting objects are important laboratories for testing models of dust grain growth. Given the active nature of such systems, to robustly diagnose the maximum dust grain sizes, it is important to carry out coordinated multiwavelength radio observations.


2021 ◽  
Vol 923 (1) ◽  
pp. L2
Author(s):  
Giacomo Fragione

Abstract The promise by the LIGO/Virgo/Kagra (LVK) collaboration to detect black-hole–neutron-star (BH–NS) mergers via gravitational wave (GW) emission has recently been fulfilled with the detection of GW200105 and GW200115. Mergers of BH–NS binaries are particularly exciting for their multimessenger potential since GW detection can be followed by an electromagnetic (EM) counterpart (kilonova, gamma-ray burst, afterglow) that can reveal important information on the equation of state (EOS) of NSs and the nature of the BH spin. This can happen whenever the NS does not directly plunge into the BH, but rather is tidally disrupted, leaving behind debris to accrete. We carry out a statistical study of the binary stars that evolve to form a BH–NS binary and compute the rate of merger events that can be followed by an EM counterpart. We find that ≳50% of the mergers can lead to an EM counterpart only in the case where BHs are born highly spinning (χ BH ≳ 0.7), while this fraction does not exceed about 30% for stiff NS EOSs and a few percent for soft NS EOSs for low-spinning BHs (χ BH ≲ 0.2), suggesting that a high rate of EM counterparts of BH–NS would provide support for high natal BH spins. However, the possibilities that BHs are born with near-maximal spins and that NS internal structure is described by a stiff EOS are disfavored by current LVK constraints. Considering that these values only represent an upper limit to observe an EM counterpart due to current observational limitations, such as brightness sensitivity and sky localization, BH–NS mergers are unlikely multimessenger sources.


2021 ◽  
Vol 21 (11) ◽  
pp. 272
Author(s):  
Feng Luo ◽  
Yong-Heng Zhao ◽  
Jiao Li ◽  
Yan-Jun Guo ◽  
Chao Liu

Abstract Binary stars play an important role in the evolution of stellar populations . The intrinsic binary fraction (f bin) of O and B-type (OB) stars in LAMOST DR5 was investigated in this work. We employed a cross-correlation approach to estimate relative radial velocities for each of the stellar spectra. The algorithm described by Sana et al. (2013) was implemented and several simulations were made to assess the performance of the approach. The binary fraction of the OB stars is estimated through comparing the uni-distribution between observations and simulations with the Kolmogorov-Smirnov tests. Simulations show that it is reliable for stars most of whom have six, seven and eight repeated observations. The uncertainty of orbital parameters of binarity becomes larger when observational frequencies decrease. By adopting the fixed power exponents of π = −0.45 and κ = −1 for period and mass ratio distributions, respectively, we obtain that f bin = 0.4 − 0.06 + 0.05 for the samples with more than three observations. When we consider the full samples with at least two observations, the binary fraction turns out to be 0.37 − 0.03 + 0.03 . These two results are consistent with each other in 1σ.


2021 ◽  
Vol 162 (6) ◽  
pp. 291
Author(s):  
Emiliano Jofré ◽  
Romina Petrucci ◽  
Yilen Gómez Maqueo Chew ◽  
Ivan Ramírez ◽  
Carlos Saffe ◽  
...  

Abstract Wide binary stars with similar components hosting planets provide a favorable opportunity for exploring the star–planet chemical connection. We perform a detailed characterization of the solar-type stars in the WASP-160 binary system. No planet has been reported yet around WASP-160A, while WASP-160B is known to host a transiting Saturn-mass planet, WASP-160B b. For this planet, we also derive updated properties from both literature and new observations. Furthermore, using TESS photometry, we constrain the presence of transiting planets around WASP-160A and additional ones around WASP-160B. The stellar characterization includes, for the first time, the computation of high-precision differential atmospheric and chemical abundances of 25 elements based on high-quality Gemini-GRACES spectra. Our analysis reveals evidence of a correlation between the differential abundances and the condensation temperatures of the elements. In particular, we find both a small but significant deficit of volatiles and an enhancement of refractory elements in WASP-160B relative to WASP-160A. After WASP-94, this is the second stellar pair among the shortlist of planet-hosting binaries showing this kind of peculiar chemical pattern. Although we discuss several plausible planet formation and evolution scenarios for WASP-160A and B that could explain the observed chemical pattern, none of them can be conclusively accepted or rejected. Future high-precision photometric and spectroscopic follow-up, as well as high-contrast imaging observations, of WASP-160A and B might provide further constraints on the real origin of the detected chemical differences.


2021 ◽  
Vol 923 (1) ◽  
pp. 77
Author(s):  
Andrew B. Pace ◽  
Matthew G. Walker ◽  
Sergey E. Koposov ◽  
Nelson Caldwell ◽  
Mario Mateo ◽  
...  

Abstract The Fornax dwarf spheroidal galaxy has an anomalous number of globular clusters, five, for its stellar mass. There is a longstanding debate about a potential sixth globular cluster (Fornax 6) that has recently been “rediscovered” in DECam imaging. We present new Magellan/M2FS spectroscopy of the Fornax 6 cluster and Fornax dSph. Combined with literature data we identify ∼15–17 members of the Fornax 6 cluster, showing that this overdensity is indeed a star cluster and associated with the Fornax dSph. The cluster is significantly more metal-rich (mean metallicity of [ Fe / H ] ¯ = −0.71 ± 0.05) than the other five Fornax globular clusters (−2.5 < [Fe/H] < −1.4) and more metal-rich than the bulk of Fornax. We measure a velocity dispersion of 5.6 − 1.6 + 2.0 km s − 1 corresponding to an anomalously high mass-to-light of 15 < M/L < 258 at 90% confidence when calculated assuming equilibrium. Two stars inflate this dispersion and may be either Fornax field stars or as yet unresolved binary stars. Alternatively, the Fornax 6 cluster may be undergoing tidal disruption. Based on its metal-rich nature, the Fornax 6 cluster is likely younger than the other Fornax clusters, with an estimated age of ∼2 Gyr when compared to stellar isochrones. The chemodynamics and star formation history of Fornax shows imprints of major events such as infall into the Milky Way, multiple pericenter passages, star formation bursts, and/or potential mergers or interactions. Any of these events may have triggered the formation of the Fornax 6 cluster.


2021 ◽  
Vol 923 (1) ◽  
pp. 48
Author(s):  
Jacqueline K. Faherty ◽  
Jonathan Gagné ◽  
Mark Popinchalk ◽  
Johanna M. Vos ◽  
Adam J. Burgasser ◽  
...  

Abstract Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary—CWISER J124332.12+600126.2 (W1243)—is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS (J–K s = 2.72), low surface gravity source that we classify as L6–L8γ. Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10–150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color–magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color–magnitude and color–color diagrams, and the rotation rate revealed in multiple TESS sectors are all consistent with an age of 50–150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s−2, and a mass of 15 ± 5 M Jup. We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess.


Sign in / Sign up

Export Citation Format

Share Document