polymorphic form
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 51)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Nate Schultheiss ◽  
Jeremy Holtsclaw ◽  
Matthias Zeller

Substituted triazines are a class of compounds utilized for scavenging and sequestering hydrogen sulfide in oil and gas production operations. The reaction of one of these triazines under field conditions resulted in the formation of the title compound, 2-(1,3,5-dithiazinan-5-yl)ethanol, C5H11NOS2, or MEA-dithiazine. Polymorphic form I, in space group I41/a, was first reported in 2004 and its extended structure displays one-dimensional, helical strands connected through O—H...O hydrogen bonds. We describe here the form II polymorph of the title compound, which crystallizes in the orthorhombic space group Pbca as centrosymmetric dimers through pairwise O—H...N hydrogen bonds from the hydroxyl moiety to the nitrogen atom of an adjacent molecule.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 197
Author(s):  
Izabela Jendrzejewska ◽  
Robert Musioł ◽  
Tomasz Goryczka ◽  
Ewa Pietrasik ◽  
Joanna Klimontko ◽  
...  

X-ray powder diffraction (XRPD) and thermal analysis (differential scanning calorimetry/derivative of thermogravimetry (DSC/DTG)) are solid-state techniques that can be successfully used to identify and quantify various chemical compounds in polycrystalline mixtures, such as dietary supplements or drugs. In this work, 31 dietary supplements available on the Polish market that contain iron compounds, namely iron gluconate, fumarate, bisglycinate, citrate and pyrophosphate, were evaluated. The aim of the work was to identify iron compounds declared by the manufacturer as food supplements and to try to verify compliance with the manufacturer’s claims. Studies performed by X-ray and thermal analysis confirmed that crystalline iron compounds (iron (II) gluconate, iron (II) fumarate), declared by the manufacturers, were present in the investigated dietary supplements. Iron (II) bisglycinate proved to be semi-crystalline. However, depending on the composition of the formulation, it was possible to identify this compound in the tested supplements. For amorphous iron compounds (iron (III) citrate and iron (III) pyrophosphate), the diffraction pattern does not have characteristic diffraction lines. Food supplements containing crystalline iron compounds have a melting point close to the melting point of pure iron compounds. The presence of excipients was found to affect the shapes and positions of the endothermic peaks significantly. Widening of endothermic peaks and changes in their position were observed, as well as exothermic peaks indicating crystallization of amorphous compounds. Weight loss was determined for all dietary supplements tested. Analysis of the DTG curves showed that the thermal decomposition of most food supplements takes place in several steps. The results obtained by a combination of both simple, relatively fast and reliable XRPD and DSC/DTG methods are helpful in determining phase composition, pharmaceutical abnormalities or by detecting the presence of the correct polymorphic form.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 223
Author(s):  
Anita M. Grześkiewicz ◽  
Maciej Kubicki

High-quality crystals of a certain polymorphic form of thiobarbituric acid containing both keto and enol tautomers in the asymmetric unit were obtained. High-resolution X-ray diffraction data up to sinθ/λ = 1.0 Å−1 were collected and subsequently successfully used for the refining of the multipolar model of electron density distribution. The use of a crystal containing both ketone and enol forms allowed a direct comparison of the topological analysis results and a closer look at the differences between these two forms. The similarities and differences between the deformation densities, electrostatic potentials, Laplacian maps and bond characteristics of the tautomers were analysed. Additionally, the spectrum of the intermolecular interactions was identified and studied from classical, relatively strong N-H···O and O-H···O hydrogen bonds through weaker N-H···S hydrogen bonds to weak interactions (for instance, C-H···O, C-H···S and N···O). The results of these studies point toward the importance of including both the geometrical features and the details of the electron density distribution in the analysis of such weak interactions.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ali Nokhodchi ◽  
Taravat Ghafourian ◽  
Nour Nashed ◽  
Kofi Asare-Addo ◽  
Elmira Behboudi ◽  
...  

AbstractSolubility determination of poorly water-soluble drugs is pivotal for formulation scientists when they want to develop a liquid formulation. Performing such a test with different ratios of cosolvents with water is time-consuming and costly. The scarcity of solubility data for poorly water-soluble drugs increases the importance of developing correlation and prediction equations for these mixtures. Therefore, the aim of the current research is to determine the solubility of acetylsalicylic acid in binary mixtures of ethanol+water at 25 and 37°C. Acetylsalicylic acid is non-stable in aqueous solutions and readily hydrolyze to salicylic acid. So, the solubility of acetylsalicylic acid is measured in ethanolic mixtures by HPLC to follow the concentration of produced salicylic acid as well. Moreover, the solubility of acetylsalicylic acid is modeled using different cosolvency equations. The measured solubility data were also predicted using PC-SAFT EOS model. DSC results ruled out any changes in the polymorphic form of acetylsalicylic acid after the solubility test, whereas XRPD results showed some changes in crystallinity of the precipitated acetylsalicylic acid after the solubility test. Fitting the solubility data to the different cosolvency models showed that the mean relative deviation percentage for the Jouyban-Acree model was less than 10.0% showing that this equation is able to obtain accurate solubility data for acetylsalicylic acid in mixtures of ethanol and water. Also, the predicted data with an average mean relative deviation percentage (MRD%) of less than 29.65% show the capability of the PC-SAFT model for predicting solubility data. A brief comparison of the solubilities of structurally related solutes to acetylsalicylic acid was also provided.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1552
Author(s):  
Iben Ostergaard ◽  
Haiyan Qu

In this work, the solubility of a non-steroidal anti-inflammatory drug (NSAID), piroxicam, is investigated. The polymorphic form II, which is the most stable form at room temperature, was investigated in seven different solvents with various polarities. It has been found that the solubility of piroxicam in the solvents is in the following order: chloroform > dichloromethane > acetone > ethyl acetate > acetonitrile > acetic acid > methanol > hexane. Crystallization of piroxicam from different solvents has been performed with evaporative crystallization and cooling crystallization; the effects of solvent evaporation rate and solute concentration have also been studied. Both form I and form II could be produced in cooling and evaporative crystallization, and no simple link can be identified between the operating parameters and the polymorphic outcome. Results obtained in the present work showed the stochastic nature of the nucleation of different polymorphs as well as the complexity of the crystallization of a polymorphic system.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1938
Author(s):  
Lena Ritters ◽  
Yuanyuan Tian ◽  
Stephan Reichl

The formulation of active pharmaceutical ingredients (APIs) in amorphous solid dispersions (ASDs) is a promising approach to improve the bioavailability of poorly soluble compounds. However, problems often arise in the production of tablets from ASDs regarding the compressibility and recrystallization of the API. In the present study, the preparation of spray-dried ASDs of paracetamol (PCM) and four different types of polyvinylpyrrolidone (PVP) and their further processing into tablets were investigated. The influence of PVP type on the glass transition temperature (Tg) and the physical stability of ASD powders were characterized by differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD). ASD powders with 10 to 30% PCM were stable for at least 48 weeks. PCM contents of 40 to 50% led to recrystallization of the amorphous PCM within a few days or weeks. ASD with PVP/vinyl acetate (VA) copolymer (PVP/VA) was the most unstable and tended to recrystallize in PCM polymorphic form II. This formulation was therefore used for tablet studies. The influence of compression force on recrystallization, crushing strength, and drug release was investigated. Even high compression forces did not affect the stability of the ASD. However, the ASD tablets led to slow release of the API.


2021 ◽  
Vol 11 (04) ◽  
pp. 2150021
Author(s):  
Peng Jie Xue ◽  
Shi Lin Liu ◽  
Jian Jiang Bian

The effects of polymorphic form and particle size of SiO2 fillers on the dielectric, mechanical and thermal properties of SiO2–Polyetheretherketone (SiO2–PEEK) composites were investigated in this paper. Strong low frequency (<10Hz) Debye-like dielectric dispersions could be observed for all samples. The dielectric permittivity at high frequencies of the composite exhibits little morphology or particle size-sensitive characteristics of the SiO2 fillers. All the composites obtained in this case demonstrate the dielectric permittivities of [Formula: see text] at high frequencies. The crystalline [Formula: see text]-cristobalite filled composite exhibits lower dielectric loss and mechanical strength, but larger thermal expansion coefficient and thermal conductivity, compared with the similar particle sized amorphous SiO2 filled one. The crystalline [Formula: see text]-quartz filled composite demonstrates the lowest mechanical strength and highest dielectric loss. An increase in particle size of the spherical fused silica fillers decreases the dielectric loss, while increases the thermal conductivity of the composite. The flexural strength of the composite reaches the maximum value of 113 MPa when the particle size of spherical SiO2 filler is [Formula: see text]m. Particle packing by combining optimal amounts of differently sized spherical fused silica fillers leads to a substantial improvement of mechanical strength (153MPa) coupled with reasonable dielectric and thermal properties due to the synergic effect (dielectric permittivity ([Formula: see text] = 3.35, dielectric loss (tan[Formula: see text] @10 GHz, thermal conductivity ([Formula: see text] = 0.74 W/m*k ([Formula: see text]C), coefficient of thermal expansion ([Formula: see text]C and relative density ([Formula: see text]) = 99.72%).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1089
Author(s):  
Serena Bertoni ◽  
Nadia Passerini ◽  
Beatrice Albertini

Despite the growing interest in lipid-based formulations, their polymorphism is still a challenge in the pharmaceutical industry. Understanding and controlling the polymorphic behavior of lipids is a key element for achieving the quality and preventing stability issues. This study aims to evaluate the impact of different oral-approved liquid lipids (LL) on the polymorphism, phase transitions and structure of solid lipid-based formulations and explore their influence on drug release. The LL investigated were isopropyl myristate, ethyl oleate, oleic acid, medium chain trigycerides, vitamin E acetate, glyceryl monooleate, lecithin and sorbitane monooleate. Spray-congealing was selected as an example of a melting-based solvent-free manufacturing method to produce microparticles (MPs) of tristearin (Dynasan®118). During the production process, tristearin MPs crystallized in the metastable α-form. Stability studied evidenced a slow phase transition to the stable β-polymorph overtime, with the presence of the α-form still detected after 60 days of storage at 25 °C. The addition of 10% w/w of LL promoted the transition of tristearin from the α-form to the stable β-form with a kinetic varying from few minutes to days, depending on the specific LL. The combination of various techniques (DSC, X-ray diffraction analysis, Hot-stage polarized light microscopy, SEM) showed that the addition of LL significantly modified the crystal structure of tristearin-based formulations at different length scales. Both the polymorphic form and the LL addition had a strong influence on the release behavior of a model hydrophilic drug (caffeine). Overall, the addition of LL can be considered an interesting approach to control triglyceride crystallization in the β-form. From the industrial viewpoint, this approach might be advantageous as any polymorphic change will be complete before storage, hence enabling the production of stable lipid formulations.


Sign in / Sign up

Export Citation Format

Share Document