online feature selection
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 149
Author(s):  
Waqar Khan ◽  
Lingfu Kong ◽  
Brekhna Brekhna ◽  
Ling Wang ◽  
Huigui Yan

Streaming feature selection has always been an excellent method for selecting the relevant subset of features from high-dimensional data and overcoming learning complexity. However, little attention is paid to online feature selection through the Markov Blanket (MB). Several studies based on traditional MB learning presented low prediction accuracy and used fewer datasets as the number of conditional independence tests is high and consumes more time. This paper presents a novel algorithm called Online Feature Selection Via Markov Blanket (OFSVMB) based on a statistical conditional independence test offering high accuracy and less computation time. It reduces the number of conditional independence tests and incorporates the online relevance and redundant analysis to check the relevancy between the upcoming feature and target variable T, discard the redundant features from Parents-Child (PC) and Spouses (SP) online, and find PC and SP simultaneously. The performance OFSVMB is compared with traditional MB learning algorithms including IAMB, STMB, HITON-MB, BAMB, and EEMB, and Streaming feature selection algorithms including OSFS, Alpha-investing, and SAOLA on 9 benchmark Bayesian Network (BN) datasets and 14 real-world datasets. For the performance evaluation, F1, precision, and recall measures are used with a significant level of 0.01 and 0.05 on benchmark BN and real-world datasets, including 12 classifiers keeping a significant level of 0.01. On benchmark BN datasets with 500 and 5000 sample sizes, OFSVMB achieved significant accuracy than IAMB, STMB, HITON-MB, BAMB, and EEMB in terms of F1, precision, recall, and running faster. It finds more accurate MB regardless of the size of the features set. In contrast, OFSVMB offers substantial improvements based on mean prediction accuracy regarding 12 classifiers with small and large sample sizes on real-world datasets than OSFS, Alpha-investing, and SAOLA but slower than OSFS, Alpha-investing, and SAOLA because these algorithms only find the PC set but not SP. Furthermore, the sensitivity analysis shows that OFSVMB is more accurate in selecting the optimal features.


Author(s):  
Dianlong You ◽  
Miaomiao Sun ◽  
Shunpan Liang ◽  
Ruiqi Li ◽  
Yang Wang ◽  
...  

2021 ◽  
Author(s):  
Xiaoxuan Wang ◽  
Forough Shahab Samani ◽  
Andreas Johnsson ◽  
Rolf Stadler

2021 ◽  
pp. 546-555
Author(s):  
Carlos Puerto-Santana ◽  
Pedro Larrañaga ◽  
Javier Diaz-Rozo ◽  
Concha Bielza

2021 ◽  
Vol 222 ◽  
pp. 106966
Author(s):  
Dipanjyoti Paul ◽  
Anushree Jain ◽  
Sriparna Saha ◽  
Jimson Mathew

2021 ◽  
Author(s):  
Islem Jarraya ◽  
Fatma BenSaid ◽  
Wael Ouarda ◽  
Umapada Pal ◽  
Adel Alimi

This paper focuses on the face detection problem of three popular animal cat-egories that need control such as horses, cats and dogs. To be precise, a new Convolutional Neural Network for Animal Face Detection (CNNAFD) is actu-ally investigated using processed filters based on gradient features and applied with a new way. A new convolutional layer is proposed through a sparse feature selection method known as Automated Negotiation-based Online Feature Selection (ANOFS). CNNAFD ends by stacked fully connected layers which represent a strong classifier. The fusion of CNNAFD and MobileNetV2 constructs the newnetwork CNNAFD-MobileNetV2 which improves the classification results and gives better detection decisions. Our work also introduces a new Tunisian Horse Detection Database (THDD). The proposed detector with the new CNNAFD-MobileNetV2 network achieved an average precision equal to 99.78%, 99% and 98.28% for cats, dogs and horses respectively.


2021 ◽  
Author(s):  
Islem Jarraya ◽  
Fatma BenSaid ◽  
Wael Ouarda ◽  
Umapada Pal ◽  
Adel Alimi

This paper focuses on the face detection problem of three popular animal cat-egories that need control such as horses, cats and dogs. To be precise, a new Convolutional Neural Network for Animal Face Detection (CNNAFD) is actu-ally investigated using processed filters based on gradient features and applied with a new way. A new convolutional layer is proposed through a sparse feature selection method known as Automated Negotiation-based Online Feature Selection (ANOFS). CNNAFD ends by stacked fully connected layers which represent a strong classifier. The fusion of CNNAFD and MobileNetV2 constructs the newnetwork CNNAFD-MobileNetV2 which improves the classification results and gives better detection decisions. Our work also introduces a new Tunisian Horse Detection Database (THDD). The proposed detector with the new CNNAFD-MobileNetV2 network achieved an average precision equal to 99.78%, 99% and 98.28% for cats, dogs and horses respectively.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1240
Author(s):  
Yang Liu ◽  
Hailong Su ◽  
Cao Zeng ◽  
Xiaoli Li

In complex scenes, it is a huge challenge to accurately detect motion-blurred, tiny, and dense objects in the thermal infrared images. To solve this problem, robust thermal infrared vehicle and pedestrian detection method is proposed in this paper. An important weight parameter β is first proposed to reconstruct the loss function of the feature selective anchor-free (FSAF) module in its online feature selection process, and the FSAF module is optimized to enhance the detection performance of motion-blurred objects. The proposal of parameter β provides an effective solution to the challenge of motion-blurred object detection. Then, the optimized anchor-free branches of the FSAF module are plugged into the YOLOv3 single-shot detector and work jointly with the anchor-based branches of the YOLOv3 detector in both training and inference, which efficiently improves the detection precision of the detector for tiny and dense objects. Experimental results show that the method proposed is superior to other typical thermal infrared vehicle and pedestrian detection algorithms due to 72.2% mean average precision (mAP).


2021 ◽  
Vol 11 (1) ◽  
pp. 275-287
Author(s):  
B. Venkatesh ◽  
J. Anuradha

Abstract Nowadays, in real-world applications, the dimensions of data are generated dynamically, and the traditional batch feature selection methods are not suitable for streaming data. So, online streaming feature selection methods gained more attention but the existing methods had demerits like low classification accuracy, fails to avoid redundant and irrelevant features, and a higher number of features selected. In this paper, we propose a parallel online feature selection method using multiple sliding-windows and fuzzy fast-mRMR feature selection analysis, which is used for selecting minimum redundant and maximum relevant features, and also overcomes the drawbacks of existing online streaming feature selection methods. To increase the performance speed of the proposed method parallel processing is used. To evaluate the performance of the proposed online feature selection method k-NN, SVM, and Decision Tree Classifiers are used and compared against the state-of-the-art online feature selection methods. Evaluation metrics like Accuracy, Precision, Recall, F1-Score are used on benchmark datasets for performance analysis. From the experimental analysis, it is proved that the proposed method has achieved more than 95% accuracy for most of the datasets and performs well over other existing online streaming feature selection methods and also, overcomes the drawbacks of the existing methods.


Sign in / Sign up

Export Citation Format

Share Document