horizontal heterogeneity
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 2)

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Yong-Chan Cho ◽  
Hyung Seok Sim ◽  
Songhie Jung ◽  
Han-Gyeoul Kim ◽  
Jun-Soo Kim ◽  
...  

Abstract Background The stem exclusion stage is a stage of forest development that is important for understanding the subsequent understory reinitiation stage and maturation stage during which horizontal heterogeneity is formed. Over the past 11 years (2009–2019), we observed a deciduous broad-leaved forest in the Albongbunji Basin in Ulleungdo, South Korea in its stem exclusion stage, where Fagus engleriana (Engler’s beech) is the dominant species, thereby analyzing the changes in the structure (density and size distributions), function (biomass and species richness), and demographics. Results The mean stem density data presented a bell-shaped curve with initially increasing, peaking, and subsequently decreasing trends in stem density over time, and the mean biomass data showed a sigmoidal pattern indicating that the rate of biomass accumulation slowed over time. Changes in the density and biomass of Fagus engleriana showed a similar trend to the changes in density and biomass at the community level, which is indicative of the strong influence of this species on the changing patterns of forest structure and function. Around 2015, a shift between recruitment and mortality rates was observed. Deterministic processes were the predominant cause of tree mortality in our study; however, soil deposition that began in 2017 in some of the quadrats resulted in an increase in the contribution of stochastic processes (15% in 2019) to tree mortality. The development of horizontal heterogeneity was observed in forest gaps. Conclusions Our observations showed a dramatic shift between the recruitment and mortality rates in the stem exclusion stage, and that disturbance increases the uncertainty in forest development increases. The minor changes in species composition are likely linked to regional species pool and the limited role of the life-history strategy of species such as shade tolerance and habitat affinity. Our midterm records of ecological succession exhibited detailed demographic dynamics and contributed to the improvement of an ecological perspective in the stem exclusion stage.


2019 ◽  
Vol 116 (39) ◽  
pp. 19318-19323 ◽  
Author(s):  
Carla E. Batista ◽  
Jianhuai Ye ◽  
Igor O. Ribeiro ◽  
Patricia C. Guimarães ◽  
Adan S. S. Medeiros ◽  
...  

The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models.


Icarus ◽  
2019 ◽  
Vol 329 ◽  
pp. 197-206 ◽  
Author(s):  
Casey A. Moore ◽  
John E. Moores ◽  
Claire E. Newman ◽  
Mark T. Lemmon ◽  
Scott D. Guzewich ◽  
...  

2017 ◽  
Vol 78 (2) ◽  
pp. 318-327 ◽  
Author(s):  
C. S. Miranda ◽  
R. M. Gamarra ◽  
C. L. Mioto ◽  
N. M. Silva ◽  
A. P. Conceição Filho ◽  
...  

Abstract This is the first report on analysis of habitat complexity and heterogeneity of the Pantanal wetland. The Pantanal encompasses a peculiar mosaic of environments, being important to evaluate and monitor this area concerning conservation of biodiversity. Our objective was to indirectly measure the habitat complexity and heterogeneity of the mosaic forming the sub-regions of the Pantanal, by means of remote sensing. We obtained free images of Normalized Difference Vegetation Index (NDVI) from the sensor MODIS and calculated the mean value (complexity) and standard deviation (heterogeneity) for each sub-region in the years 2000, 2008 and 2015. The sub-regions of Poconé, Canoeira, Paraguai and Aquidauana presented the highest values of complexity (mean NDVI), between 0.69 and 0.64 in the evaluated years. The highest horizontal heterogeneity (NDVI standard deviation) was observed in the sub-region of Tuiuiú, with values of 0.19 in the years 2000 and 2015, and 0.21 in the year 2008. We concluded that the use of NDVI to estimate landscape parameters is an efficient tool for assessment and monitoring of the complexity and heterogeneity of the Pantanal habitats, applicable in other regions.


2017 ◽  
Vol 17 (13) ◽  
pp. 8489-8508 ◽  
Author(s):  
Thomas Fauchez ◽  
Steven Platnick ◽  
Kerry Meyer ◽  
Céline Cornet ◽  
Frédéric Szczap ◽  
...  

Abstract. This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR) brightness temperatures (BTs) at the top of the atmosphere (TOA) as a function of spatial resolution from 50 m to 10 km. A realistic 3-D cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloud-top and base altitudes at 10 and 12 km, respectively, consisting of aggregate column crystals of Deff = 20 µm), and 3-D thermal infrared radiative transfer (RT) is simulated with the 3DMCPOL code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i) the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB) and the (ii) horizontal radiative transport (HRT) leading to the independent pixel approximation error (IPAE). A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial-resolution results (above ∼ 250 m) with averaged values of up to 5–7 K, while the IPAE mainly impacts the high-spatial-resolution results (below ∼ 250 m) with average values of up to 1–2 K. A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 m. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial resolutions.


2017 ◽  
Author(s):  
Thomas Fauchez ◽  
Steven Platnick ◽  
Kerry Meyer ◽  
Céline Cornet ◽  
Frédéric Szczap ◽  
...  

Abstract. This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR) brightness temperatures (BT) at the top of the atmosphere (TOA) as a function of spatial resolution from 50 m to 10 km. A realistic 3-D cirrus field is generated by the 3DCLOUD model, and 3-D thermal infrared radiative transfer (RT) is simulated with the 3DMCPOL code. According to previous studies, differences between 3-D BT computed from a heterogeneous pixel and 1-D RT computed from a homogeneous pixel are considered dependent, at nadir, on two effects: (i) the optical thickness horizontal heterogeneity leading to the homogeneous plane parallel bias (PPHB) and the (ii) horizontal radiative transport (HRT) leading to the independent pixel approximation error (IPAE). A unique but realistic cirrus case is simulated and, as expected, the PPHB impacts mainly the low spatial resolution results (above 250 m) with averaged values up to 5–7 K while the IPAE impacts mainly the high spatial resolution results (below 250 m) with average values up to 1–2 K. A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution where the combination of PPHB and HRT effects is the smallest, falls between 100 m and 250 m. These spatial resolutions appear thus to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial resolutions.


2016 ◽  
Vol 16 (12) ◽  
pp. 7785-7811 ◽  
Author(s):  
Boris Bonn ◽  
Erika von Schneidemesser ◽  
Dorota Andrich ◽  
Jörn Quedenau ◽  
Holger Gerwig ◽  
...  

Abstract. Urban air quality and human health are among the key aspects of future urban planning. In order to address pollutants such as ozone and particulate matter, efforts need to be made to quantify and reduce their concentrations. One important aspect in understanding urban air quality is the influence of urban vegetation which may act as both emitter and sink for trace gases and aerosol particles. In this context, the "Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons 2014" (BAERLIN2014) campaign was conducted between 2 June and 29 August in the metropolitan area of Berlin and Brandenburg, Germany. The predominant goals of the campaign were (1) the characterization of urban gaseous and particulate pollution and its attribution to anthropogenic and natural sources in the region of interest, especially considering the connection between biogenic volatile organic compounds and particulates and ozone; (2) the quantification of the impact of urban vegetation on organic trace gas levels and the presence of oxidants such as ozone; and (3) to explain the local heterogeneity of pollutants by defining the distribution of sources and sinks relevant for the interpretation of model simulations. In order to do so, the campaign included stationary measurements at urban background station and mobile observations carried out from bicycle, van and airborne platforms. This paper provides an overview of the mobile measurements (Mobile BAERLIN2014) and general conclusions drawn from the analysis. Bicycle measurements showed micro-scale variations of temperature and particulate matter, displaying a substantial reduction of mean temperatures and particulate levels in the proximity of vegetated areas compared to typical urban residential area (background) measurements. Van measurements extended the area covered by bicycle observations and included continuous measurements of O3, NOx, CO, CO2 and point-wise measurement of volatile organic compounds (VOCs) at representative sites for traffic- and vegetation-affected sites. The quantification displayed notable horizontal heterogeneity of the short-lived gases and particle number concentrations. For example, baseline concentrations of the traffic-related chemical species CO and NO varied on average by up to ±22.2 and ±63.5 %, respectively, on the scale of 100 m around any measurement location. Airborne observations revealed the dominant source of elevated urban particulate number and mass concentrations being local, i.e., not being caused by long-range transport. Surface-based observations related these two parameters predominantly to traffic sources. Vegetated areas lowered the pollutant concentrations substantially with ozone being reduced most by coniferous forests, which is most likely caused by their reactive biogenic VOC emissions. With respect to the overall potential to reduce air pollutant levels, forests were found to result in the largest decrease, followed by parks and facilities for sports and leisure. Surface temperature was generally 0.6–2.1 °C lower in vegetated regions, which in turn will have an impact on tropospheric chemical processes. Based on our findings, effective future mitigation activities to provide a more sustainable and healthier urban environment should focus predominantly on reducing fossil-fuel emissions from traffic as well as on increasing vegetated areas.


Sign in / Sign up

Export Citation Format

Share Document