soil stabilizer
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 50)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 8 ◽  
Author(s):  
Hui Yao ◽  
Yiran Wang ◽  
Junfu Liu ◽  
Mei Xu ◽  
Pengrui Ma ◽  
...  

Lignin is the second-largest plant polymer on Earth after cellulose. About 98% of lignin produced in the papermaking and pulping industry is used for combustion heating or power generation. Less than 2% of lignin is used in more valuable fields, mainly in the formulation of dispersants, adhesives, and surfactants. Asphalt is one of the most important materials in pavement engineering. It is a dark brown complex mixture composed of hydrocarbons with different molecular weights and their non-metallic derivatives. Because the chemical structure of lignin is similar to that of asphalt, it is a carbon-based hydrocarbon material. More researchers studied the application of lignin in pavement engineering. In this paper, the structure, application, and extraction technology of lignin were summarized. This is a review article describing the different applications of lignin in pavement engineering and exploring the prospects of the application. There are three main types of pavement materials that can be used for lignin in pavement engineering, which are asphalt, asphalt mixture, and roadbed soil. In asphalt, lignin can be used as a modifier, extender, emulsifier, antioxidant, and coupling agent. In asphalt mixtures, lignin can be used as an additive. In road base soils, lignin can be used as a soil stabilizer. Furthermore, the article analyzed the application effects of lignin from the life cycle assessment. The conclusions suggest that lignin-modified asphalt exhibits more viscosity and hardness, and its high-temperature resistance and rutting resistance can be significantly improved compared with conventional asphalt. In addition, some lignin-modified asphalt binders exhibit reduced low-temperature crack resistance and fatigue resistance, which can be adjusted and selected according to the climate change in different regions. The performance of lignin as an asphalt mixture additive and asphalt extender has been proved to be feasible. Lignin can also produce good mechanical properties as well as environmental benefits as a soil stabilizer. In summary, lignin plays an important role in asphalt pavement and roadbed soil, and it is likely to be a development trend in the future due to its environmental friendliness and low cost. More research is needed to generalize the application of lignin in pavement engineering.


2022 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Ruigeng Hu ◽  
Xiuhai Wang ◽  
Hongjun Liu ◽  
Hao Leng

A novel scour protection approach for pipeline using the Ionic Soil Stabilizer (ISS) solidified soil was proposed in this study. The ISS-solidified slurry can be poured adjacent to the pipeline immediately after it was placed, or in the growing scour holes. In the present study, the first type was utilized as the scour protection layer around the pipeline. A series of laboratory flume tests were conducted to validate the protective capacity of ISS-solidified slurry for the pipeline in waves and combined waves and current. Then, the scanning electron microscope (SEM) tests and pore size tests were carried out, respectively, to investigate the mechanism of ISS-solidified slurry for scour protection around the pipeline. Finally, the effects of the ISS-solidified layer for liquefaction stability of non-cohesive subsoil were evaluated. The results indicated that the ISS-solidified slurry is a reliable, economic approach for scour protection around pipelines in the ocean environment. It is noteworthy that if a non-cohesive soil layer underlies the ISS-solidified slurry, it is vulnerable to suffer accumulated liquefaction due to the dense crust structure of the ISS-solidified layer, so the adverse effects for accumulated liquefaction should be considered carefully due to the set of the ISS-solidified layer.


Author(s):  
Phoolwanti Nanda

Abstract: The usage of waste material for stabilizing black cotton soil has been a sustainable interest. Kota stone slurry is a waste from kota stone and fly ash is a waste from industries containing high amount of sodium and magnesium, was used as a soil stabilizer for blac cotton soil improvement in this study. This research investigated the effects of sizes and percentages of kota stone slurry mix and fly ash on the physical and strength properties, which included particle size distribution, Atterberg limits, compaction, and unconfined compressive strength (UCS) of blac cotton soil. Micro structural characterization, including the scanning electron microscopic, energy dispersive X-ray spectroscopy, and X-ray diffraction was conducted on both untreated and treated black cotton soil samples to examine the mechanism of strength development. The addition of kota stone slurry and fly ash reduced the water holding capacity, which then caused the reduction in soil plasticity (from 18 to 11%) and optimum water content (from 20 to 16%) along with the increase in peak dry density (from 1.66 to 1.74 Mg/m3). The strength of black cotton soil may increased from 50 to almost 220 kPa. The optimum kota stone slurry and fly ash contents, providing the highest UCS, were at 20 and 30% for 0.063 mm kota stone slurry and fly ash and 0.15 mm kota stone slurry and fly ash, respectively. The UCS improvement of treated marine clay is attributed to the formation of cementation compounds, mainly aluminum magnesium silicate hydrate (A–M–S–H). The outcome of this research will allow the use of RBT as a low-carbon soil stabilizer across civil engineering applications. Keywords: Stablization, Fly ash, kota stone slurry, Atterberg limits, Compaction, and unconfined compressive strength


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1268
Author(s):  
Xue-Ting Wu ◽  
Yi Qi ◽  
Jun-Ning Liu ◽  
Bin Chen

In this study, an environmentally friendly ionic soil stabilizer (ISS) was adopted with combination of Portland cement to stabilize a marine muck. The macro and micro tests results demonstrated that the ISS was an effective stabilizer to improve the strength of marine muck when it was used combined with cement after adding the alkalizer NaOH. Except for the reduction in interlayer distance of clay minerals by ISS, Ca2+ and SO42− dissolved from ISS promoted the production of ettringite (AFt), pozzolanic and carbonation reactions of Portland cement in the presence of NaOH. Meanwhile, the hydration products of curing reaction notably agglomerated soil particles, which caused an obvious decrease of pores and a high increase of strength for solidified soils. Furthermore, this combination of stabilizers can not only save the dosage of cement, but also accelerate the solidification speed, decrease the cement setting time within 7 days to meet the curing requirements, and enhance the strength of solidified soils.


2021 ◽  
Vol 926 (1) ◽  
pp. 012101
Author(s):  
S Alam ◽  
F Fahriani ◽  
Y Apriyanti

Abstract A building construction must be built on the soil with good bearing capacity. Increasing of bearing capacity of the soil can be done by adding material of soil stabilizer. Bamboo charcoal powder was used in this study as a stabilizer for clay. The percentage of the addition of bamboo charcoal powder to clay soil in this study was 5%, 10%, and 15%. The California Bearing Ratio (CBR) test was carried out on original clay and stabilized clay to determine the bearing capacity of the soil. The results of this study as showed an increase in the CBR value of each percentage of the addition of bamboo charcoal powder. The highest CBR value was the addition of 15% bamboo charcoal powder with an increase in the CBR value of the original clay by 82.87%. The increase in the CBR value of the soil indicates that there is an increase in the bearing capacity of the clay due to the addition of bamboo charcoal powder


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaochao Zhang ◽  
Yujian Zhong ◽  
Xiangjun Pei ◽  
Yuying Duan

The soil of the Loess Plateau is highly susceptible to erosion due to its distinct loess structure with poor water stability and disintegrates easily. Previous research has focused on improving soil strength without considering stability and ecological performance. Comprehensive improvements may be achieved by cross-linked polymers (CLPs), but their effect on loess structure remains unclear. In the present study, we investigate CLPs as a new organic soil stabilizer to improve soil aggregate stability. To determine the effect of CLPs on the stabilization of loess, a series of indoor tests was conducted to assess unconfined compressive strength, water stability, soil-water characteristics, and plant height. The stabilization mechanism was analyzed by comparing the microstructure, mineral composition, and features of functional groups of loess before and after treatment. The results showed that, compared with untreated loess, the unconfined compressive strength and anti-disintegration property of treated loess were significantly increased. The water retention capacity was improved, and the germination rate and growth of plants were promoted. Microscopic analysis showed that the use of CLPs did form new minerals in the loess or change the functional groups, rather, CLPs improved the microstructure, reduced the total volume of pores, and increased the degree of soil compaction. Field tests showed that the erosion of loess hillsides was effectively controlled by CLPs. Under the same erosive conditions, the slope surface treated with CLPs was more intact than the untreated slope surface. Our findings provide new strategies regarding the application of CLPs as soil stabilizers to control loess erosion and promote vegetation restoration.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wei Huang ◽  
Zili Feng ◽  
Huanran Fu ◽  
Wei Xiang

An ionic soil stabilizer (ISS) is used to reinforce clay soils because the ISS can regulate the hydration processes and microstructures of clays. To evaluate the regulation of ISS, natural bentonite was modified by ISS at different concentrations in this research. Water vapour adsorption and X-ray diffraction (XRD) were carried out to interpret the hydration mechanism of bentonite. Meanwhile, an associated analysis between hydration pore structures and hydration mechanisms was implemented through variation of pore characteristic tests at different relative humidities (RHs) to distinguish multiscale pore adsorption of water during the corresponding hydration process. In addition, the pore characteristics were studied via XRD, nitrogen adsorption, and mercury injection tests. Finally, the origins that adsorbed water and pore structures changed by adding ISS were discussed. The results showed that for calcium bentonite, the cations hydrated first in the range of 0 < RH < 0.45 ~ 0.55 , accompanied by the expansion of micropores. Then, adsorption occurred on the basal surface of the crystal layer in the range of 0.45 ~ 0.55 < RH < 0.8 ~ 0.9 , with water mainly adsorbed into the mesopores. With further hydration when RH > 0.8 ~ 0.9 , diffused double layer (DDL) water ceaselessly entered the macropores. Both adsorbed water and multiscale pore size decreased when ISS was added to bentonite. The origins of the reduction were the regulation of ISS to exchangeable cations and the basal surface of the crystal layer.


CIVED ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 94
Author(s):  
Amelia Oktavia ◽  
Idharmahadi Adha ◽  
Setyanto Setyanto

Various methods of soil stabilizations in Indonesia are more increasingly used for soil quality improvement, one of the methods is using chemically additive materials with ISS 2500 (Ionic Soil Stabilizer). This chemical solution is able to cover soil particles through electro-chemical reactions, so that the water content is separated and cohesion among soil particles is strengthened. However, unstable weather and temperature changes (durability) in forms of rainfall and heat influence and cause soil defects especially in road construction. In this reseach, the tested soil was clay with low plasticity from Karang Anyar region in Lampung Selatan regency, and mixed with 0.9 ml of ISS 2500 solution content the ISS optimum content. To enable reactions between soil and ISS 2500, the mixed soil was treated in 18 days with durability treatment and cycles addition; 0,2,4, and 6 cycles. The laboratory results indicated that CBR test in cycle 0, 2, 4, and 6 obtained 8%, 7.6%, 5.7%, and 5.1% respectively.  The CBR value of the mix decreased regularly along with given amounts of additional cycles. However, the overall CBR value of the stabilization of low plasticity clay with an ISS of 2500 (Ionic Soil Stabilizer) can meet the requirements of Bina Marga as subgrade, because the CBR value obtained is greater than 5% even though it is given cycle treatment. The ISS 2500 material can be used as an alternative stabilization material for the improvement of the subgrade.


Sign in / Sign up

Export Citation Format

Share Document