short circuit current density
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 117)

H-INDEX

24
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Zohaib Ali ◽  
Khuram Ali

Abstract Present study investigates the performance of BaSi2 based BSF structure solar cell. SCAPS 1D simulator has been employed to investigate the heterostructure solar cell. To decrease the recombination loss due to minority carrier, a new configuration is proposed by inclusion of the p-type cuprous oxide (Cu2O) as BSF layer. The Cu2O BSF layer width varying in range 0.1 to 0.4 µm to analyze the feasibility of device for optimum performance. The anticipated structure consists of ZnO/CdS/BaSi2/Cu2O layers and offers the maximum efficiency of above 24%. Parameters for example open circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), conversion efficiency (η) and quantum efficiency (QE) of the device have been analyzed graphically. The optimized structure may have significant impact on future development of advanced photovoltaic devices.


Author(s):  
Naoya Yamaguchi ◽  
Hiroaki Sano ◽  
Hikaru Sawahata ◽  
Masahiro Nakano ◽  
Tetsuya TAIMA ◽  
...  

Abstract From ~1500 published journal papers on organic photovoltaics (OPVs), we extracted OPV performance parameters of power conversion efficiency (PCE), open circuit voltage (VOC) and short circuit current density (JSC) and chemical structures of photovoltaic layer materials to investigate the relation between the extracted data of OPVs accompanied by non-fullerene acceptors (NFAs). Our analysis indicated that there was a suitable range of VOC for high PCE or JSC in NFAs. We also investigated the correlation between the performance parameters and chemical structures of small molecule NFAs. Our approach may enable us to provide new design strategy for high performance OPVs.


Author(s):  
Ning Li ◽  
Chao Wang ◽  
Ye Tu ◽  
Jinming Zhang ◽  
Guanchao Yin

Micro-concentrated Cu(In,Ga)Se2 (μCPV-CIGSe) solar cells offer the potential to reduce the consumption of raw materials to a great extent while maintaining high efficiencies. A theoretical model of μCPV-CIGSe solar cells, consisting of hexagonally spaced micro-CIGSe solar cells embedded in the low-index dielectric matrix and micro-sized lenses placed right on top, is proposed for optical study. It is discovered that micro-lenses enable to effectively concentrate the incident light due to the inherent nanojet phenomenon, and the μ-CIGSe absorbers trap the penetrated light within absorbers arising from wave-guided modes. The two effects co-contribute to an optimized absorption for μCPV-CIGSe solar cells with a μ-CIGSe absorber diameter of 800 nm and a pitch of 1500 nm. Short-circuit current density reaches 36.5 mA/cm2 and accounts for 98.8% compared to their plain counterparts without lenses, corresponding to an absorber material saving by a factor of 3/4. Notably, a large contacting area between lenses and CIGSe solar cells are recommended for an improved angular tolerance. Those findings will recommend design principles for further experiments.


Author(s):  
Jiaming Xu ◽  
Huynh Thi Cam Tu ◽  
Atsushi MASUDA ◽  
Keisuke OHDAIRA

Abstract We investigate the effect of temperature and pre-annealing on the potential-induced degradation (PID) of silicon heterojunction (SHJ) photovoltaic (PV) modules. SHJ PV modules show a faster decrease in short-circuit current density (Jsc) at higher temperatures during PID tests. We also observe a complex relationship between the degree of the Jsc decrease and temperature during the PID tests. Pre-annealing before the PID tests at sufficiently high temperatures leads to the complete suppression of the PID of SHJ PV modules. The decrease in Jsc is known to be due to the chemical reduction of indium (In) in transparent conductive oxide (TCO) films in SHJ cells, in which water (H2O) in SHJ modules is involved. These indicate that H2O may out-diffuse from the SHJ PV modules during a PID test or pre-annealing at sufficiently high temperatures, by which the chemical reduction of indium in TCO into metallic In is suppressed.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012075
Author(s):  
Ammar J. Aswad ◽  
Nadeem K. Hassan ◽  
Adnan R. Ahmed

Abstract A general equation to determine properties of penternary solar cell based on Cu (In, Ga) (Se, S) 2 (CIGSSe) with a double buffer layer ZnS/Zn0.8Mg0.2O(ZMO) were derived. Numerical analysis of a (CIGSSe) solar cell with a double buffer layer ZnS/ZMO, CdS free absorber layer, were investigated using the AFORS-HET software simulation. Taking into consideration the effect of thickness and doping concentration for the CIGSSe absorption layer, ZnS buffer layer and ZnO:B(BZO) window layer on the electron transport, short circuit current density (Jsc) and open circuit voltage (Voc); numerical simulation demonstrated that the changes in band structure characteristics occurred. The solar energy conversion efficiency is 28.34%, the filling factor is 85.59%, the open circuit voltage is 782.3 mV, the short circuit current is 42.32 mA. then we take the range of the gradient between the ratio of x and y for the absorption layer, and the best result of Voc, Jsc, FF, Eff equal (838.7 mV, 40.94 mA/cm2, 86.23%, 29.61%) respectively at x= 0, y= 0.26.


2021 ◽  
Vol 13 (23) ◽  
pp. 13087
Author(s):  
Waqas Farooq ◽  
Muhammad Ali Musarat ◽  
Javed Iqbal ◽  
Syed Asfandyar Ali Kazmi ◽  
Adnan Daud Khan ◽  
...  

Modification of a cell’s architecture can enhance the performance parameters. This paper reports on the numerical modeling of a thin-film organic solar cell (OSC) featuring distributed Bragg reflector (DBR) pairs. The utilization of DBR pairs via the proposed method was found to be beneficial in terms of increasing the performance parameters. The extracted results showed that using DBR pairs helps capture the reflected light back into the active region by improving the photovoltaic parameters as compared to the structure without DBR pairs. Moreover, implementing three DBR pairs resulted in the best enhancement gain of 1.076% in power conversion efficiency. The measured results under a global AM of 1.5G were as follows: open circuit voltage (Voc) = 0.839 V; short circuit current density (Jsc) = 10.98 mA/cm2; fill factor (FF) = 78.39%; efficiency (η) = 11.02%. In addition, a thermal stability analysis of the proposed design was performed and we observed that high temperature resulted in a decrease in η from 11.02 to 10.70%. Our demonstrated design may provide a pathway for the practical application of OSCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xun Zhao ◽  
Yihao Zhou ◽  
Jing Xu ◽  
Guorui Chen ◽  
Yunsheng Fang ◽  
...  

AbstractMagnetoelastic effect characterizes the change of materials’ magnetic properties under mechanical deformation, which is conventionally observed in some rigid metals or metal alloys. Here we show magnetoelastic effect can also exist in 1D soft fibers with stronger magnetomechanical coupling than that in traditional rigid counterparts. This effect is explained by a wavy chain model based on the magnetic dipole-dipole interaction and demagnetizing factor. To facilitate practical applications, we further invented a textile magnetoelastic generator (MEG), weaving the 1D soft fibers with conductive yarns to couple the observed magnetoelastic effect with magnetic induction, which paves a new way for biomechanical-to-electrical energy conversion with short-circuit current density of 0.63 mA cm−2, internal impedance of 180 Ω, and intrinsic waterproofness. Textile MEG was demonstrated to convert the arterial pulse into electrical signals with a low detection limit of 0.05 kPa,  even with heavy perspiration or in underwater situations without encapsulations.


2021 ◽  
Vol 11 (21) ◽  
pp. 10494
Author(s):  
Xiaolan Wang ◽  
Xiaoping Zou ◽  
Jialin Zhu ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

The depolarization field of ferroelectric photovoltaic materials can enhance the separation and transport of photogenerated carriers, which will improve the performance of photovoltaic devices, thus attracting the attention of researchers. In this paper, a narrow bandgap molecular ferroelectric Hexane-1,6-diammonium pentaiodobismuth (HDA-BiI5) was selected as the photo absorption layer for the fabrication of solar cells. After optimizing the ferroelectric thin film by the antisolvent process, the effect of different polarization voltages on the performance of ferroelectric devices was studied. The results showed that there was a significant increase in short-circuit current density, and the photoelectric conversion efficiency showed an overall increasing trend. Finally, we analyzed the internal mechanism of the effect of polarization on the device.


2021 ◽  
Vol 877 (1) ◽  
pp. 012001
Author(s):  
Marwah S Mahmood ◽  
N K Hassan

Abstract Perovskite solar cells attract the attention because of their unique properties in photovoltaic cells. Numerical simulation to the structure of Perovskite on p-CZTS/p-CH3NH3PbCI3/p-CZTS absorber layers is performed by using a program solar cell capacitance simulator (SCAPS-1D), with changing absorber layer thickness. The effect of thickness p-CZTS/p-CH3NH3PbCI3/p-CZTS, layers at (3.2μm, 1.8 μm, 1.1 μm) respectively are studied. The obtained results are short circuit current density (Jsc ), open circuit voltage (V oc), fill factor (F. F) and power conversion efficiency (PCE) equal to (28 mA/cm2, 0.83 v, 60.58 % and 14.25 %) respectively at 1.1 μm thickness. Our findings revealed that the dependence of current - voltage characteristics on the thickness of the absorbing layers, an increase in the amount of short circuit current density with an increase in the thickness of the absorption layers and thus led to an increase in the conversion efficiency and improvement of the cell by increasing the thickness of the absorption layers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2726
Author(s):  
Wensheng Lan ◽  
Dazheng Chen ◽  
Qirui Guo ◽  
Baichuan Tian ◽  
Xiaoping Xie ◽  
...  

All-inorganic carbon-based CsPbIBr2 perovskite solar cells (PSCs) have attracted increasing interest due to the low cost and the balance between bandgap and stability. However, the relatively narrow light absorption range (300 to 600 nm) limited the further improvement of short-circuit current density (JSC) and power conversion efficiency (PCE) of PSCs. Considering the inevitable reflectance loss (~10%) at air/glass interface, we prepared the moth-eye anti-reflector by ultraviolet nanoimprint technology and achieved an average reflectance as low as 5.15%. By attaching the anti-reflector on the glass side of PSCs, the JSC was promoted by 9.4% from 10.89 mA/cm2 to 11.91 mA/cm2, which is the highest among PSCs with a structure of glass/FTO/c-TiO2/CsPbIBr2/Carbon, and the PCE was enhanced by 9.9% from 9.17% to 10.08%. The results demonstrated that the larger JSC induced by the optical reflectance modulation of moth-eye anti-reflector was responsible for the improved PCE. Simultaneously, this moth-eye anti-reflector can withstand a high temperature up to 200 °C, and perform efficiently at a wide range of incident angles from 40° to 90° and under various light intensities. This work is helpful to further improve the performance of CsPbIBr2 PSCs by optical modulation and boost the possible application of wide-range-wavelength anti-reflector in single and multi-junction solar cells.


Sign in / Sign up

Export Citation Format

Share Document