cytogenetic analyses
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 44)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
pp. 1-9
Author(s):  
Camila M. Novaes ◽  
Marina S. Cunha ◽  
Hugo A. Werneck ◽  
Anderson Fernandes ◽  
Lucio A.O. Campos ◽  
...  

The genus <i>Partamona</i> includes 33 species of stingless bees, of which 11 were studied cytogenetically. The main goal of this study was to propose a hypothesis about chromosomal evolution in <i>Partamona</i> by combining molecular and cytogenetic data. Cytogenetic analyses were performed on 3 <i>Partamona</i> species. In addition, the molecular phylogeny included mitochondrial sequences of 11 species. Although the diploid number was constant within the genus, 2n = 34, B chromosomes were reported in 7 species. Cytogenetic data showed karyotypic variations related to chromosome morphology and the amount and distribution of heterochromatin and repetitive DNA. The molecular phylogenetic reconstruction corroborated the monophyly of the genus and separated the 2 clades (A and B). This separation was also observed in the cytogenetic data, in which species within each clade shared most of the cytogenetic characteristics. Furthermore, our data suggested that the B chromosome in the genus <i>Partamona</i> likely originated from a common ancestor of the species that have it in clade B and, through interspecific hybridization, it appeared only in <i>Partamona rustica</i> from clade A. Based on the above, <i>Partamona</i> is an interesting genus for further investigations using molecular mapping of B chromosomes as well as for broadening phylogenetic data.


2021 ◽  
Vol 143 ◽  
pp. 97-106
Author(s):  
Maria Isabel Galbiatti ◽  
Fábio Cassola ◽  
Amanda Teixeira Mesquita ◽  
Guilherme Perez Pinheiro ◽  
Juliana Lischka Sampaio Mayer ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Renata Luiza Rosa de Moraes ◽  
Francisco de Menezes Cavalcante Sassi ◽  
Luiz Antonio Carlos Bertollo ◽  
Manoela Maria Ferreira Marinho ◽  
Patrik Ferreira Viana ◽  
...  

Miniature fishes have always been a challenge for cytogenetic studies due to the difficulty in obtaining chromosomal preparations, making them virtually unexplored. An example of this scenario relies on members of the family Lebiasinidae which include miniature to medium-sized, poorly known species, until very recently. The present study is part of undergoing major cytogenetic advances seeking to elucidate the evolutionary history of lebiasinids. Aiming to examine the karyotype diversification more deeply in Pyrrhulina, here we combined classical and molecular cytogenetic analyses, including Giemsa staining, C-banding, repetitive DNA mapping, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) to perform the first analyses in five Pyrrhulina species (Pyrrhulina aff. marilynae, Pyrrhulina sp., P. obermulleri, P. marilynae and Pyrrhulina cf. laeta). The diploid number (2n) ranged from 40 to 42 chromosomes among all analyzed species, but P. marilynae is strikingly differentiated by having 2n = 32 chromosomes and a karyotype composed of large meta/submetacentric chromosomes, whose plesiomorphic status is discussed. The distribution of microsatellites does not markedly differ among species, but the number and position of the rDNA sites underwent significant changes among them. Interspecific comparative genome hybridization (CGH) found a moderate divergence in the repetitive DNA content among the species’ genomes. Noteworthy, the WCP reinforced our previous hypothesis on the origin of the X1X2Y multiple sex chromosome system in P. semifasciata. In summary, our data suggest that the karyotype differentiation in Pyrrhulina has been driven by major structural rearrangements, accompanied by high dynamics of repetitive DNAs.


2021 ◽  
Vol 7 (3) ◽  
pp. 215-219
Author(s):  
Mohammed Abdulazeez ◽  
◽  
Stefanie Kankel ◽  
Thomas Liehr ◽  
◽  
...  

Variants in size of the acrocentric short arms (acro-ps) are normally not reported and considered as chromosomal heteromorphisms (CHMs) without any influence on the carrier’s phenotype. However, if acro-ps are translocated to ends of A-chromosomes (i.e. human chromosomes 1-22 and X or Y), those rearrangements are studied in more detail. The aim of the study: Here we characterized 11 healthy carriers of a non-acrocentric satellited chromosomes der(A)t(A;acro)(pter or qter;p1?1.2) to determine the frequency of chromosome 15p and 22p in such rearrangements. Materials and methods: 11 carriers of one (10 cases) or two (1 case) der(A)t(A;acro) were identified during routine cytogenetic analyses. They were originally referred due to infertility or due to a mentally retarded child with otherwise abnormal karyotype. Here derivative chromosomes were studied by fluorescence in situ hybridization applying probes D15Z1 (specific for 15p11.2) and D22Z4 (specific for 22p11.2). As there are no DNA-sequences available for 13p11.2, 14p11.2 and 21p11.2 these regions could not be tested. Results: D15Z1 sequences were identified in 1 out of 12 derivatives der(A)t(A;acro). D22Z1 could not be detected in any of the 11 remainder derivatives. However, only 3 of the 12 der(A)t(A;acro) had acro-ps large enough to potentially comprise sub-band p11.2. Conclusion: In contrast to der(Y)t(Y;acro)(q12;p1?1.2), where in at least 65% of the cases the acro-p part contains D15Z1 sequences, here it could be shown that in der(A)t(A;acro) 15p involvement can be substantiated much less frequently. Also, in none of the two groups D22Z4-sequences were detected in acro-p-parts yet. Besides, breakpoint of acro-pparts in der(A)t(A;acro) seem to be in ~75% of the cases distal from p11.2.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 844
Author(s):  
Simona Ceraulo ◽  
Polina L. Perelman ◽  
Sofia Mazzoleni ◽  
Michail Rovatsos ◽  
Francesca Dumas

Tamarins are a distinct group of small sized New World monkeys with complex phylogenetic relationships and poorly studied cytogenetic traits. In this study, we applied molecular cytogenetic analyses by fluorescence in situ hybridization with probes specific for telomeric sequences and ribosomal DNA loci after DAPI/CMA3 staining on metaphases from five tamarin species, namely Leontocebus fuscicollis, Leontopithecus rosalia, Saguinus geoffroyi, Saguinus mystax and Saguinus oedipus, with the aim to investigate the distribution of repetitive sequences and their possible role in genome evolution. Our analyses revealed that all five examined species show similar karyotypes, 2n = 46, which differ mainly in the morphology of chromosome pairs 16–17 and 19–22, due to the diverse distribution of rDNA loci, the amplification of telomeric-like sequences, the presence of heterochromatic blocks and/or putative chromosomal rearrangements, such as inversions. The differences in cytogenetic traits between species of tamarins are discussed in a comparative phylogenetic framework, and in addition to data from previous studies, we underline synapomorphies and apomorphisms that appeared during the diversification of this group of New World monkeys.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2000
Author(s):  
Foyez Shams ◽  
Darryl D’Souza ◽  
Tariq Ezaz

Balanced chromosomal rearrangements, mainly reciprocal translocations, are considered to be the causative agent of several clinical conditions in farmed pigs, resulting in hypoprolificacy and economic losses. Literature suggests that reciprocal translocations are heritable and can occur de novo. The prevalence rate of these balanced structural rearrangements of chromosomes differs from country to country and varies between 0.5% and 3.3%. The Australian pig population is descendent of a small founder population and has since been a closed genetic group since the 1980s. Hence, any incident of reciprocal translocation along with the pedigree of boars that contribute sperm for artificial insemination has the potential to have an economic consequence. To date, there has been no published account for screening of reciprocal translocation associated with hypoprolificacy in the Australian pig population. In this study, we performed standard and molecular cytogenetic analyses to identify evidence of chromosome rearrangements and their association with hypoprolificacy in a representative 94 boar samples from a commercial nucleus herd. We identified three novel rearrangements between chromosomes 5 and 14, between chromosomes 9 and 10, and between chromosomes 10 and 12. In addition, we also detected a reciprocal translocation between chromosomes 3 and 16 that has previously been detected in pig herds in France. The prevalence rate was 6.38% within the samples used in this study. All four rearrangements were found to have an association with hypoprolificacy. Further study and routine monitoring will be necessary to identify any further rearrangements that will allow breeders to prevent the propagation of reciprocal translocations from generation to generation within the Australian pig population.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amanda Ravazi ◽  
Jader de Oliveira ◽  
Fabricio Ferreria Campos ◽  
Fernanda Fernandez Madeira ◽  
Yago Visinho dos Reis ◽  
...  

Abstract Background The tribe Rhodniini is a monophyletic group composed of 24 species grouped into two genera: Rhodnius and Psammolestes. The genus Psammolestes includes only three species, namely P. coreodes, P. tertius and P. arthuri. Natural hybridization events have been reported for the Rhodniini tribe (for genus Rhodnius specifically). Information obtained from hybridization studies can improve our understanding of the taxonomy and systematics of species. Here we report the results from experimental crosses performed between P. tertius and P. coreodes and from subsequent analyses of the reproductive and morphological aspects of the hybrids. Methods Crossing experiments were conducted between P. tertius and P. coreodes to evaluate the pre- and post-zygotic barriers between species of the Rhodniini tribe. We also performed cytogenetic analyses of the F1 hybrids, with a focus on the degree of pairing between the homeologous chromosomes, and morphology studies of the male gonads to evaluate the presence of gonadal dysgenesis. Lastly, we analyzed the segregation of phenotypic characteristics. Results Interspecific experimental crosses demonstrated intrageneric genomic compatibility since hybrids were produced in both directions. However, these hybrids showed a high mortality rate, suggesting a post-zygotic barrier resulting in hybrid unviability. The F1 hybrids that reached adulthood presented the dominant phenotypic segregation pattern for P. tertius in both directions. These insects were then intercrossed; the hybrids were used in the cross between P. tertius ♀ × P. coreodes ♂ died before oviposition, and the F1 hybrids of P. coreodes ♀ x P. tertius ♂ oviposited and their F2 hybrids hatched (however, all specimens died after hatching, still in first-generation nymph stage, pointing to a hybrid collapse event). Morphological analyses of male gonads from F1 hybrids showed that they did not have gonadal dysgenesis. Cytogenetic analyses of these triatomines showed that there were metaphases with 100% pairing between homeologous chromosomes and metaphases with pairing errors. Conclusion The results of this study demonstrate that Psammolestes spp. have intrageneric genomic compatibility and that post-zygotic barriers, namely unviability of hybrid and hybrid collapse, resulted in the breakdown of the hybrids of P. tertius and P. coreodes, confirming the specific status of species based on the biological concept of species. Graphical abstract


2021 ◽  
Vol 51 (2) ◽  
pp. 139-144
Author(s):  
Alex M. V. FERREIRA ◽  
Leila Braga RIBEIRO ◽  
Eliana FELDBERG

ABSTRACT DNA barcoding proposes that a fragment of DNA can be used to identify species. In fish, a fragment of cytochrome oxidase subunit I (COI) has been effective in many studies with different foci. Here we use this molecular tool to provide new insights into the cryptic diversity found in the Hoplias malabaricus species complex. Popularly known as trahira, H. malabaricus is widely distributed in South America. The clade shows molecular and cytogenetic diversity, and several studies have supported the occurrence of a complex of species. We performed molecular and karyotypic analysis of H. malabaricus individuals from eight Amazonian localities to assess the diversity present in the nominal taxon, and to clarify relationships within this group. We used 12 samples in cytogenetic analyses and found two karyomorphs: 2n = 40 (20m + 20sm) (karyomorph C) and 2n = 42 (22m + 20sm) (karyomorph A). We used 19 samples in molecular analyses with COI as a molecular marker, maximum likelihood analyses, and the Kimura-2-parameter evolutionary model with bootstrap support. We found karyomorph-related differentiation with bootstrap of 100%. However, we found high molecular diversity within karyomorph C. The observed pattern allowed us to infer the presence of cryptic diversity, reinforcing the existence of a species complex.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shiba Ranjan Mishra ◽  
Leena Rawal ◽  
Moneeb A. K. Othman ◽  
Atul Thatai ◽  
Aditi Sarkar ◽  
...  

Abstract Background The translocation t(8;21)(q22;q22) is one of the most frequent chromosomal abnormalities associated with acute myeloid leukemia (AML) sub type M2. About 3–5 % of cases with additional chromosomal abnormalities, including structural and numerical ones, are reported to include a complex translocation t(8;21;N). Case presentation Here we report a chromosome rearrangement observed in a 19 years-old female diagnosed with AML-M2. When subjected to (molecular) cytogenetic analyses a complex three-way translocation involving chromosomes 8, 17 and 21 was detected, forming not a t(8;21;17) as one would expect. Real time-polymerase chain reaction analysis using 6 AML specific markers showed the presence of RUNX1/RUNX1T1 fusion gene transcripts identical to those found in classical translocation t(8;21) coupled with presence of FLT3-ITD mutation identified by fragment analysis. Conclusions The present case highlights importance of complex rearrangements rarely encountered in AML, suggesting that all involved regions harbor critical candidate genes regulating the pathogenesis of AML, leading to novel as well as well-known leukemia associated chromosomal aberrations.


Author(s):  
Karan Veer Singh ◽  
Ramendra Das ◽  
Saket Niranjan ◽  
Monica Sodhi ◽  
R.S. Kataria

The domestic water buffalo (Bubalus bubalis) are classified into the swamp and riverine. However, their hybrids are also found in some parts of Assam (Brahmaputra Valley) in North-east India. Swamp buffaloes have a typical phenotypic appearance, like the shape of horns, small size, and body-color, etc. This study characterizes the indigenous ‘Bhangor’ buffalo population from the Tripura state using cytogenetic analyses. The blood of buffaloes samples were collected across the state, phenotypically identified as swamp buffaloes were cultured, terminated, and harvested using conventional karyotype protocol to determine the number of chromosomes. We have characterized ‘Bhangor’ an indigenous buffalo population from Tripura state using karyotypic analysis for the first time to confirm that all animals phenotypically identified as swamp buffaloes with 2N=48 chromosomes.


Sign in / Sign up

Export Citation Format

Share Document