aerodynamic performances
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 60)

H-INDEX

13
(FIVE YEARS 3)

Encyclopedia ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 56-69
Author(s):  
Sibo Li ◽  
Roberto Paoli

Aircraft icing refers to the ice buildup on the surface of an aircraft flying in icing conditions. The ice accretion on the aircraft alters the original aerodynamic configuration and degrades the aerodynamic performances and may lead to unsafe flight conditions. Evaluating the flow structure, icing mechanism and consequences is of great importance to the development of an anti/deicing technique. Studies have shown computational fluid dynamics (CFD) and machine learning (ML) to be effective in predicting the ice shape and icing severity under different flight conditions. CFD solves a set of partial differential equations to obtain the air flow fields, water droplets trajectories and ice shape. ML is a branch of artificial intelligence and, based on the data, the self-improved computer algorithms can be effective in finding the nonlinear mapping relationship between the input flight conditions and the output aircraft icing severity features.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 420
Author(s):  
Zhihua Lin ◽  
Zhitao Zuo ◽  
Wei Li ◽  
Jianting Sun ◽  
Xin Zhou ◽  
...  

Relying on a closed test rig of a high-power intercooling centrifugal compressor for compressed air energy storage (CAES), this study measured the static pressure and static temperature at different radii on the static wall of the impeller backside cavity (IBC) under variable rotating speeds. Simultaneously, the coupled computations of all mainstream domains with IBC or not were used for comparative analysis of the aerodynamic performances of the compressor and the internal flow field in IBC. The results show that IBC has a significant impact on coupling characteristics including pressure ratio, efficiency, torque, shaft power, and axial thrust of the centrifugal compressor. The gradients of radial static pressure and static temperature in IBC both increase with the decrease of mainstream flow or the increase of rotating speed, whose distributions are different under variable rotating speeds due to the change of the aerodynamic parameters of mainstream.


2022 ◽  
pp. 107347
Author(s):  
Liyue Wang ◽  
Cong Wang ◽  
Shuyue Wang ◽  
Gang Sun ◽  
Bo You ◽  
...  

Author(s):  
Thibault Ly ◽  
Kazim Koc ◽  
Lionel Meillard ◽  
Rainer Schnell

AbstractIn the present study, steady numerical simulations performed on the counter rotating turbo fan (CRTF) COBRA are compared with experimental data carried at the CIAM C-3A test-bench in Moscow. For this purpose, a systematic analysis of the measurement uncertainties was performed for the global aerodynamic performances of the CRTF, namely, the massflow, the total pressure ratio, the isentropic efficiency, as well as the torque ratio applied on both fan rows. Several numerical models are investigated to highlight their effects on the aforementioned predicted quantities. Differences in modeling consist in grid resolutions and the use of two turbulence models popular in the turbomachinery community. To match as much as possible the experiment running conditions, the performance map of the CRTF is simulated using the exact measured speed ratio and massflow. The comparisons show good estimations of the numerical simulation over the entire performance map. The main differences between the turbulence models occur at part-speed close to stall conditions. More surprisingly at aerodynamic design point, the importance of the turbulence modeling on the predicted torque ratio has been pointed out.


2021 ◽  
pp. 1-11
Author(s):  
Zaouche Mohammed ◽  
Foughali Khaled

In this work, a new approach for aircraft aerodynamic behavior identification by using virtual simulation is proposed. Both theoretical and experimental aspects are presented. A simulation environment, Microsoft Flight Simulator, is used as the test platform. To make the communication with this environment possible, a real-time interface that allows the read and/or write from and to the shared memory layer of this flight simulator is developed. Using this interface, the virtual aircrafts sensors are read and the commands are written to the inputs control (thrust, elevators, ailerons, trims, and rudder). Also, an identification of the aerodynamic coefficients’ derivatives using the total least square technique is presented. The piloting law expression is toughly tied to those derivatives which are unknown and not always available. The aircraft aerodynamic model is then used to calculate the aerodynamic coefficients. We determine the aerodynamic performances of the wing which is based on the polar drag, the computation of the maximum lift-to-drag coefficient ratio and the determination of the moment in which the aerodynamic stall phenomenon appears.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5171
Author(s):  
Byung Ju Lee ◽  
Jin Taek Chung

In this study, we numerically investigated the effects of design parameters, such as the strut geometry or diffusion angle, on the performance of an industrial turbine exhaust diffuser. Turbine exhaust diffusers are commonly used to change the kinetic energy of exhaust gases from the outlet of turbine stages into the static pressure. The turbine exhaust diffuser investigated in this work consisted of an annular diffuser with five identical struts equally spaced around the front circumference and a conical diffuser with a hub extension at the rear. Four design parameters were considered and several values for each parameter were tested in this study. The aerodynamic performances of the studied diffusers were evaluated according to their pressure recovery coefficients and rates of total pressure loss. Contours for the velocity, pressure, and entropy increase were plotted and compared for the various diffuser shapes. The numerical results showed that the strut thickness and the axially swept angle of the strut significantly influence the aerodynamic performance of the turbine exhaust diffuser, whereas the strut lean angle and the diffuser hade angle are less important.


2021 ◽  
Vol 65 (2-4) ◽  
pp. 414-421
Author(s):  
Marco Ottaviani ◽  
Luca Giammichele ◽  
Renato Ricci

The objective of this paper is to explain the design steps and performance analysis of a vertical take-off and landing (VTOL) unmanned air vehicle (UAV) based on a Pilatus B4 glider scale model. Energy consumption, forces and thrust analyses are carry out to determinate the perfect match between low take-off weight and high aerodynamic performance. As a first approach a complete analysis of glider aerodynamic performances are settle to understand and design a proper support for VTOL conversion. Longitudinal static stability is fulfilled by evaluating the center of gravity location with respect to neutral position, nevertheless dynamic stability, and V-n diagram in VTOL configuration are evaluated to guarantee a correct behavior during fixed wing flight mode. In addition, power requirements, motor thrust capability and tilt-motors servo assisted system performance are determinate in perspective of flight performance to find out the perfect transition from multirotor take-off and landing mode to fixed-wing flying state. For these purposes a test bench has being designed to evaluate thrust, electrical absorption and rpm motor behavior along the throttle range. Finally, the assembly and preliminary tests are performed in order to validate the VTOL and Forward flight capability.


Author(s):  
Binbin Wei ◽  
Yongwei Gao ◽  
Dong Li

AbstractDynamic stall, which has a significant effect on the aerodynamic performances of dynamic airfoils, is closely related to the physics of the dynamic stall vortex (DSV). The physics of the DSV on the NACA 0012 airfoil was experimentally studied using unsteady pressure measurements with high time accuracy. The experimental Reynolds number was Re = 1.5 × 106, and the reduced frequency was k = 0.069. The propagation of the unsteady pressure field during the dynamic stall process was analyzed in detail. The motion characteristics of the DSV were examined, including its near-wall development characteristics and near-wall evolution velocity. Moreover, the frequency characteristics of the near-wall DSV were studied using wavelet analysis combined with proper orthogonal decomposition (POD) technology. In addition, the effects of the mean angle of attack (AoA) and the amplitude on the DSV motion and frequency characteristics were examined in detail. The effects of the mean AoA on the near-wall DSV strength and the propagation velocity were linear, while the effects of amplitude were nonlinear. The mean AoA and amplitude had a significant influence on the frequency of the leading-edge vortex (LEV) at the initial stage of the DSV development (x/c = 0.10–0.20). This work allows the DSV physics to be understood more deeply. Graphic abstract


2021 ◽  
Author(s):  
Baojie Liu ◽  
Jiaxin Liu ◽  
Xianjun Yu ◽  
Dejun Meng ◽  
Xianjun Yu

2021 ◽  
Vol 2 (3) ◽  
pp. 442-461
Author(s):  
Rafael Bardera ◽  
Ángel A. Rodríguez-Sevillano ◽  
Estela Barroso

The present work is focused on the investigation of the aerodynamic performances of a novedous bioinspired morphing Micro Air Vehicle (MAV) with an adaptive wing structure geometry. For this purpose, a numerical study of Computational Fluid Dynamics (CFD) implemented by Ansys Fluent 15.0 was performed in order to obtain insight about the aerodynamic effect of wing structure deformation when morphing devices are used, and its influence on the global aerodynamic parameters related with aircraft performances. On the other hand, an experimental study using the Particle Image Velocimetry technique and balance measurements in a Low-Speed Wind Tunnel was conducted to obtain experimental information about performances measured to establish a comparison between both, experimental and numerical results. The Micro Air Vehicle (MAV) presents a Zimmerman wing with an Eppler 61 airfoil. Three different wing configurations according to curvature and thickness variations and for all angles of attack have been studied. A comparative analysis based on aerodynamic features is performed by an assessment of lift coefficient (CL), total aerodynamic drag coefficient (CD) and aerodynamic efficiency as lift/drag ratio (CL/CD) in order to conclude the best wing configuration in terms of aerodynamic performance.


Sign in / Sign up

Export Citation Format

Share Document