insect pests
Recently Published Documents


TOTAL DOCUMENTS

5199
(FIVE YEARS 1612)

H-INDEX

73
(FIVE YEARS 11)

2023 ◽  
Vol 83 ◽  
Author(s):  
M. Attaullah ◽  
I. Ullah ◽  
M. Ali ◽  
F. Maula ◽  
I. Ilahi ◽  
...  

Abstract Odonates are important biological control agents for the control of insect pests and insect disease vectors of medical and veterinary importance. The present study was conducted to evaluate the odonate fauna of Swat, Pakistan from March to October 2019. A total of 200 specimens of odonates were collected from diverse habitats. The collected specimens of the order Odonata belonged to 5 families, three families of suborder Anisoptera namely Libellulidae, Gomphidae and Aeshnidae while two families of suborder Zygoptera (Chlorocyphidae and Coenagrionidae). The specimens were categorized into 12 genera and 22 species. Libellulidae was the dominant family (n = 138) accounting for 69% of the odonate fauna. Orthetrum was the dominant genus (n = 73) of suborder Anisoptera accounting for 36.5% of the odonate fauna. The least dominant genera were Anax, Paragomphus and Rhyothemis (n = 5 each) accounting each for 2.5% of the odonate fauna. In Zygoptera, the dominant genus was Ceriagrion (12.5%) and the least dominant genus was Ischnura (6%). Pantala flavescens (Fabricius, 1798) was the most abundant odonate species in the study area recorded from all surveyed habitats. Shannon Diversity Index (H) was 2.988 and Simpson Diversity Index (D) was 0.95 for the collected odonate fauna. The highest abundance of Odonata was recorded in August, September and May while no odonate species were recorded in January, February, November and December. Lotic water bodies were the most suitable habitats with abundant odonate fauna. Anax immaculifrons (Rambur, 1842) was the largest sized odonate species having a wingspan of 53.2±1.63 mm and body length of 56.3 ± 0.4 mm. The present study shows the status of odonate fauna of Swat, Pakistan in diverse habitats and seasonsonal variation throughout the year. Further work is recommended to bridge the gaps in the existing literature.


2023 ◽  
Vol 83 ◽  
Author(s):  
S. U. Khan ◽  
S. Ali ◽  
S. H. Shah ◽  
M. A. Zia ◽  
S. Shoukat ◽  
...  

Abstract Application of different fertilizers to check the efficiency of expression of Bt (Bacillus thuringiensis) gene in one of the leading commercialized crops (cotton) against Lepidopteran species is of great concern. The expression of Cry protein level can be controlled by the improvement of nutrients levels. Therefore, the myth of response of Cry toxin to different combinations of NP fertilizers was explored in three Bt cotton cultivars. Combinations include three levels of nitrogen and three levels of phosphorus fertilizers. Immunostrips and Cry gene(s) specific primer based PCR (Polymerase Chain Reaction) analysis were used for the presence of Bt gene that unveiled the presence of Cry1Ac gene only. Further, the ELISA (enzyme-linked immunosorbent assay) kit was used to quantify the expression of Cry1Ac protein. Under various NP fertilizers rates, the level of toxin protein exhibited highly significant differences. The highest toxin level mean was found to be 2.3740 and 2.1732 µg/g under the treatment of N150P75 kg ha-1 combination while the lowest toxin level mean was found to be 0.9158 and 0.7641 µg/g at the N50P25 kg ha-1 level at 80 and 120 DAS (Days After Sowing), respectively. It was concluded from the research that the usage of NP fertilizers has a positive relation with the expression of Cry1Ac toxin in Bt cotton. We recommend using the N150P50 kg ha-1 level as the most economical and practicable fertilizer instead of the standard dose N100P50 kg ha-1 to get the desired level of Cry1Ac level for long lasting plant resistance (<1.5). The revised dose of fertilizer may help farmers to avoid the cross-resistance development in contradiction of insect pests.


2022 ◽  
Vol 22 (11) ◽  
Author(s):  
Mogeret Sidi ◽  
Mohd Effendi Wasli ◽  
Elfera Polly ◽  
Aina Nadia Najwa Mohamad Jaffar ◽  
Meekiong Kalu ◽  
...  

Abstract. Sidi MB, Wasli ME, Polly E, Jaffar ANNM, Kalu M, Sani H, Nahrawi H, Elias H, Omar D. 2021. Short Communication: Incidence of insect pest on planted Shorea macrophylla at reforestation sites in Gunung Apeng National Park, Sarawak, Malaysia. Biodiversitas 22: 5162-5168. Incidence of insect pest in Shorea macrophylla (de Vriese) P.S. Ashton had critical foliage damage in mono planting technique. The main objectives were to assess the foliage damage intensity of planted S. macrophylla by age stands and type of foliage damage. The insect pest attacks the foliage of S. macrophylla was determined. The study site was located at Gunung Apeng National Park (GANP), Sarawak, Malaysia, with planted S. macrophylla in enrichment planting at different years (planted in 2008, 2009, 2010, and 2011 for age stand 6, 5, 4, and 3, respectively). The results showed that the degree of foliage damage decreases with the age stand of S. macrophylla tree. Therefore, foliage damage was suspected to be caused by insect pests. Among the common foliage damages observed was "hole damage" caused by insect order Lepidoptera. Although foliage damage was significant, the severity of the damage will "heal" as the age stand increases. Further investigation on other possible causes of these pest attacks should be initiated to find solutions that may hasten the growth of planted S. macrophylla for forest restoration.


Author(s):  
Nahil Abebe ◽  
Mulugeta Negeri ◽  
Emana Getu ◽  
Thangavel Selvara

Background: Wheat (Triticum aestivum L.) is an important cereal crop as being consumed as staple food in the world as well as in Ethiopia. The production of wheat in Ethiopia decreased due to the incidence of insect pests. Out of insects’ pests the Russian wheat aphid (Diuraphis noxia) is the recent one that causes yield loss either directly or indirectly. Methods: The experiment was carried out at selected districts of West Showa zone, Ethiopia during off cropping season 2019 to evaluate the yield reduction in wheat crop due to the invasion of Russian wheat aphids. Malamar, Dimethoate, neem seeds, leaves, Beaveria bassiana and Metarhizium anisopliae were used in form of spray. Result: However, Malamar and Dimethoate highly significantly lowered the population of Diuraphis noxia. The combination of Beaveria bassiana and Metarhizium anisopleae significantly lowered the population of Russian wheat aphid. The combination of Neem leaf and Neem seeds, as well as Beaveria bassiana, proved to be effective against Russian wheat aphid yet they were protected and sound against the environments. Malamar showed the maximum decrease in Diuraphis noxia populations followed by Dimethoate, the combination of Beaveria bassiana and Metarhizium anisopleae.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Minghui Jin ◽  
Yinxue Shan ◽  
Yan Peng ◽  
Ping Wang ◽  
Qi Li ◽  
...  

The insecticidal Vip3 proteins, secreted by Bacillus thuringiensis (Bt) during its vegetative growth phase, are currently used in Bt crops to control insect pests, and are genetically distinct from known insecticidal Cry proteins. Compared with Cry toxins, the mechanisms of Vip3 toxins are still poorly understood. Here, the responses of Spodoptera frugiperda larvae after Vip3Aa challenge are characterized. Using an integrative analysis of transcriptomics and proteomics, we found that Vip3Aa has enormous implications for various pathways. The downregulated genes and proteins were mainly enriched in metabolic pathways, including the insect hormone synthesis pathway, whereas the upregulated genes and proteins were mainly involved in the caspase-mediated apoptosis pathway, along with the MAPK signaling and endocytosis pathways. Moreover, we also identified some important candidate genes involved in apoptosis and MAPKs. The present study shows that exposure of S. frugiperda larvae to Vip3Aa activates apoptosis pathways, leading to cell death. The results will promote our understanding of the host response process to the Vip3Aa, and help us to better understand the mode of action of Vip3A toxins.


Author(s):  
Lucie Marquereau ◽  
Jean-Sébastien Cottineau ◽  
Olivier Fontaine ◽  
Frédéric Chiroleu ◽  
Bernard Reynaud ◽  
...  

Abstract Whiteflies are one of the major pests of tomato under greenhouses, and their control partly relies on biocontrol strategies. Among those biocontrol agents, parasitoids or predators are widely used. However, the introduction of a biocontrol agent in a new area is not trivial. For that reason, we investigated the use of a tropical native mirid, Nesidiocoris volucer (Hemiptera: Miridae), for the biological control of whiteflies among other insect pests on tomato crops under greenhouses in the subtropical island of La Réunion, France. Nesidiocoris volucer life history traits and plant injury were examined. Nymphs developed and survived between 15 and 30°C and required on average 49.41 days at 15°C and on average 10.50 days at 30°C to develop (nymph survival >94%). At 25°C, each female produced on average 65 eggs. Nesidiocoris volucer was able to feed on several prey species, but performed better on whiteflies than on spider mites or thrips. No N. volucer feeding injury was observed on tomato. Nesidiocoris volucer has also been found in tropical countries of Africa, and we believe that the data presented on this natural enemy could be of great importance for the biocontrol of whiteflies in tropical areas.


2022 ◽  
Vol 23 (2) ◽  
pp. 758
Author(s):  
Xiubing Gao ◽  
Xianfeng Hu ◽  
Feixu Mo ◽  
Yi Ding ◽  
Ming Li ◽  
...  

Using of plant essential oil that coevolved as a defense mechanism against agriculture insects is an alternative means of controlling many insect pests. In order to repel brown planthoppers (BPHs), the most notorious rice insect pest, a new film based on guar gum incorporated with citral (GC film) was formulated, which was effective while being environmentally friendly. In this paper, the effect and mechanism of GC film repellency against BPHs were determined. Repellent activity test and olfactory reaction analysis showed that GC film had repellency effect against BPHs, with repellency of 60.00% and 73.93%, respectively. The result of olfactory reaction indicated that GC film repellency against BPHs relied on smell. EPG analysis showed the proportion and mean duration of np waveform were significantly higher than in CK and increased following the treatment concentration, which indicated that GC film affected the recognition of BPHs to rice. Further analysis by RNA sequencing analysis showed a total of 679 genes were significantly upregulated and 284 genes were significantly downregulated in the BPHs fed on the rice sprayed with GC film compared to control. Odorant-binding protein (OBP) gene 797 and gustatory receptor gene (GR)/odorant receptor (OR) gene 13110 showed a significant decrease in differential expression and significant increase in differential expression, respectively. There were 0.66 and 2.55 differential expression multiples between treated BPHs and control, respectively. According to the results described above, we reasoned that GC film repellency against BPHs due to smell, by release of citral, caused the recognition difficulties for BPHs to rice, and OBP gene 797 and GR/OR gene 13110 appeared to be the crucial candidate genes for GC film repellency against BPHs. The present study depicted a clear and consistent repellency effect for GC film against BPHs and preliminarily clarified the mechanism of GC film as a repellent against BPHs, which might offer an alternative approach for control of BPHs in the near future. Our results could also help in the development and improvement of GC films.


Sign in / Sign up

Export Citation Format

Share Document