chromosomal architecture
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2343
Author(s):  
Martin Knytl ◽  
Nicola Reinaldo Fornaini

The widely distributed ray-finned fish genus Carassius is very well known due to its unique biological characteristics such as polyploidy, clonality, and/or interspecies hybridization. These biological characteristics have enabled Carassius species to be successfully widespread over relatively short period of evolutionary time. Therefore, this fish model deserves to be the center of attention in the research field. Some studies have already described the Carassius karyotype, but results are inconsistent in the number of morphological categories for individual chromosomes. We investigated three focal species: Carassius auratus, C. carassius and C. gibelio with the aim to describe their standardized diploid karyotypes, and to study their evolutionary relationships using cytogenetic tools. We measured length (q+plength) of each chromosome and calculated centromeric index (i value). We found: (i) The relationship between q+plength and i value showed higher similarity of C. auratus and C. carassius. (ii) The variability of i value within each chromosome expressed by means of the first quartile (Q1) up to the third quartile (Q3) showed higher similarity of C. carassius and C. gibelio. (iii) The fluorescent in situ hybridization (FISH) analysis revealed higher similarity of C. auratus and C. gibelio. (iv) Standardized karyotype formula described using median value (Q2) showed differentiation among all investigated species: C. auratus had 24 metacentric (m), 40 submetacentric (sm), 2 subtelocentric (st), 2 acrocentric (a) and 32 telocentric (T) chromosomes (24m+40sm+2st+2a+32T) ; C. carassius: 16m+34sm+8st+42T; and C. gibelio: 16m+22sm+10st+2a+50T. (v) We developed R scripts applicable for the description of standardized karyotype for any other species. The diverse results indicated unprecedented complex genomic and chromosomal architecture in the genus Carassius probably influenced by its unique biological characteristics which make the study of evolutionary relationships more difficult than it has been originally postulated.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sadaruddin Chachar ◽  
Jingrong Liu ◽  
Pingxian Zhang ◽  
Adeel Riaz ◽  
Changfei Guan ◽  
...  

Epigenetic modifications alter the gene activity and function by causing change in the chromosomal architecture through DNA methylation/demethylation, or histone modifications without causing any change in DNA sequence. In plants, DNA cytosine methylation (5mC) is vital for various pathways such as, gene regulation, transposon suppression, DNA repair, replication, transcription, and recombination. Thanks to recent advances in high throughput sequencing (HTS) technologies for epigenomic “Big Data” generation, accumulated studies have revealed the occurrence of another novel DNA methylation mark, N6-methyladenosine (6mA), which is highly present on gene bodies mainly activates gene expression in model plants such as eudicot Arabidopsis (Arabidopsis thaliana) and monocot rice (Oryza sativa). However, in non-model crops, the occurrence and importance of 6mA remains largely less known, with only limited reports in few species, such as Rosaceae (wild strawberry), and soybean (Glycine max). Given the aforementioned vital roles of 6mA in plants, hereinafter, we summarize the latest advances of DNA 6mA modification, and investigate the historical, known and vital functions of 6mA in plants. We also consider advanced artificial-intelligence biotechnologies that improve extraction and prediction of 6mA concepts. In this Review, we discuss the potential challenges that may hinder exploitation of 6mA, and give future goals of 6mA from model plants to non-model crops.


2021 ◽  
Vol 53 (2) ◽  
pp. 230-242
Author(s):  
Brice Laffleur ◽  
Junghyun Lim ◽  
Wanwei Zhang ◽  
Yiyun Chen ◽  
Evangelos Pefanis ◽  
...  

Acta Naturae ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 15-33
Author(s):  
L. S. Melnikova ◽  
P. G. Georgiev ◽  
A. K. Golovnin

The mechanisms underlying long-range interactions between chromatin regions and the principles of chromosomal architecture formation are currently under extensive scrutiny. A special class of regulatory elements known as insulators is believed to be involved in the regulation of specific long-range interactions between enhancers and promoters. This review focuses on the insulators of Drosophila and mammals, and it also briefly characterizes the proteins responsible for their functional activity. It was initially believed that the main properties of insulators are blocking of enhancers and the formation of independent transcription domains. We present experimental data proving that the chromatin loops formed by insulators play only an auxiliary role in enhancer blocking. The review also discusses the mechanisms involved in the formation of topologically associating domains and their role in the formation of the chromosomal architecture and regulation of gene transcription.


2020 ◽  
Author(s):  
Hugo Maruyama ◽  
Eloise I. Prieto ◽  
Takayuki Nambu ◽  
Chiho Mashimo ◽  
Kosuke Kashiwagi ◽  
...  

AbstractArchaeal species encode a variety of distinct lineage-specific chromosomal proteins. We have previously shown that in Thermococcus kodakarensis, histone, Alba, and TrmBL2 play distinct roles in chromosome organization. Although our understanding of individual archaeal chromosomal proteins has been advancing, how archaeal chromosomes are folded into higher-order structures and how they are regulated are largely unknown. Here, we investigated the primary and higher-order structures of archaeal chromosomes from different archaeal lineages. Atomic force microscopy of chromosome spreads out of Thermoplasma acidophilum and Pyrobaculum calidifontis cells revealed 10-nm fibers and 30–40-nm globular structures, suggesting the occurrence of higher-order chromosomal folding. Our results also indicated that chromosome compaction occurs toward the stationary phase. Micrococcal nuclease digestion indicated that fundamental structural units of the chromosome exist in T. acidophilum and T. kodakarensis but not in P. calidifontis or Sulfolobus solfataricus. In vitro reconstitution showed that, in T. acidophilum, the bacterial HU protein homolog HTa formed a 6-nm fiber by wrapping DNA, and that Alba was responsible for the formation of the 10-nm fiber by binding along the DNA without wrapping. Remarkably, Alba could form different higher-order complexes with histone or HTa on DNA in vitro. Mass spectrometry detected HTa in the T. acidophilum chromosome but not in other species. A putative transcriptional regulator of the AsnC/Lrp family (Pcal_1183) was detected on the P. calidifontis chromosome, but not on that of other species studied. Putative membrane-associated proteins were detected in the chromosomes of the three archaeal species studied, including T. acidophilum, P. calidifontis, and T. kodakarensis. Collectively, our data show that Archaea use different combinations of proteins to achieve chromosomal architecture and functional regulation.


2020 ◽  
Vol 6 (13) ◽  
pp. eaaz3152
Author(s):  
Olga Kyrchanova ◽  
Oksana Maksimenko ◽  
Airat Ibragimov ◽  
Vladimir Sokolov ◽  
Nikolay Postika ◽  
...  

In mammals, a C2H2 zinc finger (C2H2) protein, CTCF, acts as the master regulator of chromosomal architecture and of the expression of Hox gene clusters. Like mammalian CTCF, the Drosophila homolog, dCTCF, localizes to boundaries in the bithorax complex (BX-C). Here, we have determined the minimal requirements for the assembly of a functional boundary by dCTCF and two other C2H2 zinc finger proteins, Pita and Su(Hw). Although binding sites for these proteins are essential for the insulator activity of BX-C boundaries, these binding sites alone are insufficient to create a functional boundary. dCTCF cannot effectively bind to a single recognition sequence in chromatin or generate a functional insulator without the help of additional proteins. In addition, for boundary elements in BX-C at least four binding sites for dCTCF or the presence of additional DNA binding factors is required to generate a functional insulator.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 552 ◽  
Author(s):  
Tomás Naranjo

The tribe Triticeae contains about 500 diploid and polyploid taxa, among which are important crops, such as wheat, barley and rye. The phylogenetic relationships, genome compo-sition and chromosomal architecture, were already reported in the pioneer genetic studies on these species, given their implications in breeding-related programs. Hexaploid wheat, driven by its high capacity to develop cytogenetic stocks, has always been at the forefront of these studies. Cytogenetic stocks have been widely used in the identification of homoeologous relationships between the chromosomes of wheat and related species, which has provided valuable information on genome evolution with implications in the transfer of useful agronomical traits into crops. Meiotic recombination is non-randomly distributed in the Triticeae species, and crossovers are formed in the distal half of the chromosomes. Also of interest for crops improvement is the possibility of being able to modulate the intraspecific and interspecific recombination landscape to increase its frequency in crossover-poor regions. Structural changes may help in this task. In fact, chromosome truncation increases the recombination frequency in the adjacent intercalary region. However, structural changes also have a negative effect upon recombination. Gross chromosome rearrangements produced in the evolution usually suppress meiotic recombination between non-syntenic homoeologs. Thus, the chromosome structural organization of related genomes is of great interest in designing strategies of the introgression of useful genes into crops.


2019 ◽  
Author(s):  
Alexander I Manolov ◽  
Dmitry N Konanov ◽  
Dmitry E Fedorov ◽  
Ivan S Osmolovsky ◽  
Elena N Ilina

AbstractMotivationComparative genomics studies may be used to acquire new knowledge about chromosomal architecture - the rules to combine a set of genes in a genome of a living organism. Hundreds of thousands of prokaryote genomes were sequenced and assembled. Still, there is a lack of computational tools able to compare hundreds of genomes simultaneously, i.e. to find hotspots of genome rearrangements and horizontal gene transfer or to analyze which part of an operon is conservative and which is variable.ResultsWe developed Genomic Complexity Browser (GCB), a tool that allows to visualize gene contexts in a graph form and evaluate genome variability of different parts of a prokaryotic chromosome. We introduce a measure called complexity, which is an indirect measure of genome variability. Intraspecies and interspecies comparisons reveal that regions with high complexity tend to be located in a similar context in different strains and species. While many of such hot spots are associated with prophages and pathogenicity islands, some of them lack these determinants and mechanisms that govern their dynamics are to be elucidated.AvailabilityGCB is freely available as a web server at http://gcb.rcpcm.org and as a stand-alone application at https://github.com/DNKonanov/[email protected]


Sign in / Sign up

Export Citation Format

Share Document