endothelial cell death
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 38)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Vol 22 (24) ◽  
pp. 13663
Author(s):  
Kseniia Markova ◽  
Valentina Mikhailova ◽  
Yulia Milyutina ◽  
Andrey Korenevsky ◽  
Anastasia Sirotskaya ◽  
...  

Microvesicles (MVs) are plasma extracellular vesicles ranging from 100 (150) to 1000 nm in diameter. These are generally produced by different cells through their vital activity and are a source of various protein and non-protein molecules. It is assumed that MVs can mediate intercellular communication and modulate cell functions. The interaction between natural killer cells (NK cells) and endothelial cells underlies multiple pathological conditions. The ability of MVs derived from NK cells to influence the functional state of endothelial cells in inflammatory conditions has yet to be studied well. In this regard, we aimed to study the effects of MVs derived from NK cells of the NK-92 cell line stimulated with IL-1β on the phenotype, caspase activity, proliferation and migration of endothelial cells of the EA.hy926 cell line. Endothelial cells were cultured with MVs derived from cells of the NK-92 cell line after their stimulation with IL-1β. Using flow cytometry, we evaluated changes in the expression of endothelial cell surface molecules and endothelial cell death. We evaluated the effect of MVs derived from stimulated NK cells on the proliferative and migratory activity of endothelial cells, as well as the activation of caspase-3 and caspase-9 therein. It was established that the incubation of endothelial cells with MVs derived from cells of the NK-92 cell line stimulated with IL-1β and with MVs derived from unstimulated NK cells, leads to the decrease in the proliferative activity of endothelial cells, appearance of the pan leukocyte marker CD45 on them, caspase-3 activation and partial endothelial cell death, and reduced CD105 expression. However, compared with MVs derived from unstimulated NK cells, a more pronounced effect of MVs derived from cells of the NK-92 cell line stimulated with IL-1β was found in relation to the decrease in the endothelial cell migratory activity and the intensity of the CD54 molecule expression on them. The functional activity of MVs is therefore mediated by the conditions they are produced under, as well as their internal contents.


2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Julia Bolik ◽  
Freia Krause ◽  
Marija Stevanovic ◽  
Monja Gandraß ◽  
Ilka Thomsen ◽  
...  

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell–induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3033
Author(s):  
Vichuda Charoensaensuk ◽  
Yen-Chou Chen ◽  
Yun-Ho Lin ◽  
Keng-Liang Ou ◽  
Liang-Yo Yang ◽  
...  

Porphyromonas gingivalis, a periodontal pathogen, has been proposed to cause blood vessel injury leading to cerebrovascular diseases such as stroke. Brain endothelial cells compose the blood-brain barrier that protects homeostasis of the central nervous system. However, whether P. gingivalis causes the death of endothelial cells and the underlying mechanisms remain unclear. This study aimed to investigate the impact and regulatory mechanisms of P. gingivalis infection in brain endothelial cells. We used bEnd.3 cells and primary mouse endothelial cells to assess the effects of P. gingivalis on endothelial cells. Our results showed that infection with live P. gingivalis, unlike heat-killed P. gingivalis, triggers brain endothelial cell death by inducing cell apoptosis. Moreover, P. gingivalis infection increased intracellular reactive oxygen species (ROS) production, activated NF-κB, and up-regulated the expression of IL-1β and TNF-α. Furthermore, N-acetyl-L-cysteine (NAC), a most frequently used antioxidant, treatment significantly reduced P. gingivalis-induced cell apoptosis and brain endothelial cell death. The enhancement of ROS production, NF-κB p65 activation, and proinflammatory cytokine expression was also attenuated by NAC treatment. The impact of P. gingivalis on brain endothelial cells was also confirmed using adult primary mouse brain endothelial cells (MBECs). In summary, our results showed that P. gingivalis up-regulates IL-1β and TNF-α protein expression, which consequently causes cell death of brain endothelial cells through the ROS/NF-κB pathway. Our results, together with the results of previous case-control studies and epidemiologic reports, strongly support the hypothesis that periodontal infection increases the risk of developing cerebrovascular disease.


2021 ◽  
pp. 153537022110465
Author(s):  
Na Wang ◽  
Xinwen Xu ◽  
Hualin Li ◽  
Qipu Feng ◽  
Hongge Wang ◽  
...  

Dietary cholesterol supplements cause hypercholesterolemia and atherosclerosis along with a reduction of copper concentrations in the atherosclerotic wall in animal models. This study was to determine if target-specific copper delivery to the copper-deficient atherosclerotic wall can block the pathogenesis of atherosclerosis. Male New Zealand white rabbits, 10-weeks-old and averaged 2.0 kg, were fed a diet containing 1% (w/w) cholesterol or the same diet without cholesterol as control. Twelve weeks after the feeding, the animals were injected with copper-albumin microbubbles and subjected to ultrasound sonication specifically directed at the atherosclerotic lesions (Cu-MB-US) for target-specific copper delivery, twice a week for four weeks. This regiment was repeated 3 times with a gap of two weeks in between. Two weeks after the last treatment, the animals were harvested for analyses of serum and aortic pathological changes. Compared to controls, rabbits fed cholesterol-rich diet developed atherosclerotic lesion with a reduction in copper concentrations in the lesion tissue. Cu-MB-US treatment significantly increased copper concentrations in the lesion, and reduced the size of the lesion. Furthermore, copper repletion reduced the number of apoptotic cells as well as the content of cholesterol and phospholipids in the atherosclerotic lesion without a disturbance of the stability of the lesion. The results thus demonstrate that target-specific copper supplementation suppresses the progression of atherosclerosis at least in part through preventing endothelial cell death, thus reducing lipid infiltration in the atherosclerotic lesion.


2021 ◽  
Vol 18 ◽  
Author(s):  
Weimin Ren ◽  
Chuyi Huang ◽  
Heling Chu ◽  
Yuping Tang ◽  
Xiaobo Yang

Aims: Brain vascular endothelial cell dysfunction after rtPA treatment is a significant factor associated with poor prognosis, suggesting that alleviation of rtPA-related endothelial cell injury may represent a potential beneficial strategy along with rtPA thrombolysis. Background: Thrombolysis with recombinant tissue plasminogen activator (rtPA) is beneficial for acute ischemic stroke but may increase the risk of hemorrhagic transformation (HT), which is considered ischemia-reperfusion injury. The underlying reason may contribute to brain endothelial injury and dysfunction related to rtPA against ischemic stroke. As previous studies have demonstrated that transiently blocked Cx43 using peptide5 (Cx43 mimetic peptide) during retinal ischemia reduced vascular leakage, it is necessary to know whether this might help decrease side effect of rtPA within the therapeutic time window. Objective: This study aims to investigate the effects of peptide5 on rtPA-related cell injury during hypoxia/reoxygenation (H/R) within the therapeutic time window. Methods: In this study, we established a cell hypoxia/reoxygenation H/R model in cultured primary rat brain microvascular endothelial cells (RBMECs) and evaluated endothelial cell death and permeability after rtPA treatment with or without transient peptide5. In addition, we also investigated the potential signaling pathway to explore the underlying mechanisms preliminarily. Results: The results showed that peptide5 inhibited rtPA-related endothelial cell death and permeability. It also slightly increased tight junction (ZO-1, occluding, claudin-5) and β-catenin mRNA expression, demonstrating that peptide5 might attenuate endothelial cell injury by regulating the Wnt/β-catenin pathway. The following bioinformatic exploration from the GEO dataset GSE37239 was also consistent with our findings. Conclusion: This study showed that the application of peptide5 maintained cell viability and permeability associated with rtPA treatment, revealing a possible pathway that could be exploited to limit rtPA-related endothelial cell injury during ischemic stroke. Furthermore, the altered Wnt/β-catenin signaling pathway demonstrated that signaling pathways associated with Cx43 might have potential applications in the future. This study may provide a new way to attenuate HT and assist the application of rtPA in ischemic stroke.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Wang ◽  
Cheng Z. Wang ◽  
John R. Salsbury ◽  
Jianzi Zhang ◽  
Perenlei Enkhbaatar ◽  
...  

AbstractBurn wound progression is an important determinant of patient morbidity and mortality after injury. In this study, we used the brass comb contact burn to determine burn wound vertical injury progression with a focus on blood vessel occlusion and endothelial cell death. Class A 3-month-old Yorkshire pigs received a brass comb contact burn. Burn wounds were sampled at 0, 30 min, 1, 2, 4, and 24 h. Hematoxylin Phloxin Saffron staining and vimentin immunostaining were performed to determine the depth of blood vessel occlusion and endothelial cell death, respectively. The depth of blood vessel occlusion increased by 30 min (p < 0.005) and peaked by 1 to 4 h (p > 0.05). The depth of endothelial cell death risen to a plateau at 30 min (p < 0.005) to 2 h and then peaked at 24 h (p < 0.03). We observed a progression of blood vessel occlusion and vascular endothelial cell death from the middle of the dermis to the hypodermis within 2 h to 4 h after the initial injury, namely a progression from a second-degree (partial thickness) to third-degree (full thickness) burn. These data suggest that therapeutic interventions during this time window may provide a better outcome by reducing or preventing vertical progression of blood vascular occlusion or endothelial cell death.


2021 ◽  
Vol 207 ◽  
pp. 108574
Author(s):  
Angela Gomez ◽  
Andres Serrano ◽  
Enrique Salero ◽  
Arianna Tovar ◽  
Guillermo Amescua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document