substrate conversion
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 44)

H-INDEX

27
(FIVE YEARS 2)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 382
Author(s):  
Mohammed A. Suliman ◽  
Khaled M. Al Aqad ◽  
Chanbasha Basheer

This study reports using a droplet flow assisted mechanism to enhance the electrocatalytic oxidation of benzyl alcohol, 2-phenoxyethanol, and hydroxymethylfurfural at room temperature. Cobalt phosphide (CoP) was employed as an active electrocatalyst to promote the oxidation of each of the individual substrates. Surface analysis of the CoP electrocatalyst using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), as well as electrochemical characterization, revealed that it had excellent catalytic activity for each of the substrates studied. The combined droplet flow with the continuous flow electrochemical oxidation approach significantly enhanced the conversion and selectivity of the transformation reactions. The results of this investigation show that at an electrolysis potential of 1.3 V and ambient conditions, both the selectivity and yield of aldehyde from substrate conversion can reach 97.0%.


Author(s):  
Alejandro Villacampa ◽  
Luis Duque ◽  
Olga Juanes ◽  
Francisco Javier Palomares ◽  
Pilar Herrasti ◽  
...  

AbstractThe use of magnetic nanoparticles in C–C coupling reactions enables the facile recovery of the catalyst under environmentally friendly conditions. Herein, the synthesis of Pd/Fe@Fe3O4 nanoparticles by the reduction of Pd2+ and oxidation of Fe on the surface of preformed Fe@Fe3O4 is reported. The nanoparticles were characterized using a variety of analytical techniques (transmission electron microscopy, Mössbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction) to determine their size, structure, and chemical composition. The catalytic efficiency of these nanoparticles in classical Suzuki–Miyaura coupling reactions was investigated. The nanoparticles achieved high catalytic activity with the application of local heating by an alternating magnetic field. An investigation was conducted at identical temperatures to compare global heating with the application of an external magnetic field; magnetic heating demonstrated excellent substrate conversion in lesser time and at a lower temperature. The catalyst could also be recycled and reused three times, with ~ 30% decrease in the substrate conversion, which is most likely due to the agglomeration of the Pd nanoparticles or poisoning of the Pd catalyst. This approach, which takes advantage of the catalytic activity and magnetic susceptibility of magnetic nanoparticles, can be applied to several organic transformations to improve their efficiency. Graphical abstract


Author(s):  
Martina Aulitto ◽  
Laura Martinez-Alvarez ◽  
Gabriella Fiorentino ◽  
Danila Limauro ◽  
Xu Peng ◽  
...  

The production of bio-chemicals requires the use of microbial strains with efficient substrate conversion and excellent environmental robustness, such as Bacillus coagulans spp. So far the genomes of about 50 strains have been sequenced. Herein, we report a comparative genomic analysis of nine strains on the full repertoire of CAZymes, secretion systems, and resistance mechanisms to environmental challenges. Moreover, B. coagulans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune system along with CRISPR-associated Cas) genes, was also analysed. Overall, this study expands our understanding of the strains genomic diversity of B. coagulans to fully exploit its potential in biotechnological applications.


2021 ◽  
Author(s):  
Lin Shu ◽  
Jinjie Gu ◽  
Qinghui Wang ◽  
Shaoqi Sun ◽  
Youtian Cui ◽  
...  

Abstract Background Klebsiella pneumoniae contains an endogenous isobutanol synthesis pathway. ipdC, annotated as an indole-3-pyruvate decarboxylase (Kp-IpdC), was identified to catalyze the formation of isobutyraldehyde from 2-ketoisovalerate. Results Compared with 2-ketoisovalerate decarboxylase from Lactococcus lactis (KivD), a decarboxylase commonly used in artificial isobutanol synthesis, Kp-IpdC has an 2.8-fold lower Km for 2-ketoisovalerate, leading to higher isobutanol production without induction. However, high level expression of ipdC by induction resulted in a low isobutanol titer. In vitro enzymatic reactions showed that Kp-IpdC exhibits promiscuous pyruvate decarboxylase activity, which adversely consume the available pyruvate precursor for isobutanol synthesis. To address this we have engineered Kp-IpdC to reduce pyruvate decarboxylase activity. From computational modeling we identified 10 residues surrounding the active site for mutagenesis. Ten designs consisting of eight single-point mutants and two double-mutants were selected for exploration. Mutants L546W and T290L showed 5.1% and 22.1% of catalytic efficiency on pyruvate, which were then expressed in K. pneumoniae for in vivo test. Isobutanol production by K. pneumoniae T290L was 25% higher than the control strain, and a final titer of 5.5 g/L isobutanol was obtained with a substrate conversion ratio of 0.16 mol/mol glucose. Conclusions This research provides a new way to improve the efficiency of the biological route of isobutanol production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bernard Grillet ◽  
Karen Yu ◽  
Estefania Ugarte-Berzal ◽  
Rik Janssens ◽  
Rafaela Vaz Sousa Pereira ◽  
...  

ObjectivesTo explore posttranslational modifications (PTMs), including proteolytic activation, multimerization, complex formation and citrullination of gelatinases, in particular of gelatinase B/MMP-9, and to detect in gelatin-Sepharose affinity-purified synovial fluids, the presence of specific MMP proteoforms in relation to arthritis.MethodsLatent, activated, complexed and truncated gelatinase-A/MMP-2 and gelatinase B/MMP-9 proteoforms were detected with the use of zymography analysis to compare specific levels, with substrate conversion assays, to test net proteolytic activities and by Western blot analysis to decipher truncation variants. Citrullination was detected with enhanced sensitivity, by the use of a new monoclonal antibody against modified citrullines.ResultsAll MMP-9 and MMP-2 proteoforms were identified in archival synovial fluids with the use of zymography analysis and the levels of MMP-9 versus MMP-2 were studied in various arthritic diseases, including rheumatoid arthritis (RA). Secondly, we resolved misinterpretations of MMP-9 levels versus proteolytic activities. Thirdly, a citrullinated, truncated proteoform of MMP-9 was discovered in archival RA synovial fluid samples and its presence was corroborated as citrullinated hemopexin-less MMP-9 in a small prospective RA sample cohort.ConclusionSynovial fluids from rheumatoid arthritis contain high levels of MMP-9, including its truncated and citrullinated proteoform. The combination of MMP-9 as analyte and its PTM by citrullination could be of clinical interest, especially in the field of arthritic diseases.


2021 ◽  
Author(s):  
Amirah Syakirah Zahirulain ◽  
Fauziah Marpani ◽  
Syazana Mohamad Pauzi ◽  
'Azzah Nazihah Che Abd Rahim ◽  
Hang Thi Thuy Cao ◽  
...  

Abstract Integration of membrane filtration and biocatalysis has appealing benefits in terms of simultaneous substrate conversion and product separation in one reactor. Nevertheless, the interaction between enzymes and membrane is complex and the mechanism of enzyme docking on membrane is similar to membrane fouling. In this study, focus is given on the assessment of enzyme immobilization mechanism on reverse asymmetric polymer membrane based on the permeate flux data during the procedure. Evaluation of membrane performance in terms of its permeability, fouling mechanisms, enzyme loading, enzyme reusability and biocatalytic productivity were also conducted. Alcohol Dehydrogenase (EC 1.1.1.1), able to catalyze formaldehyde to methanol with subsequent oxidation of NADH to NAD was selected as the model enzyme. Two commercial, asymmetric, flat sheet polymer membranes (PES and PVDF) were immobilized with the enzyme in the reverse mode. Combination of concentration polarization phenomenon and pressure driven filtration successfully immobilized almost 100% of the enzymes in the feed solutions. The biocatalytic membrane reactor recorded more than 90% conversion, stable permeate flux with no enzyme leaching even after 5 cycles. The technique showing promising results to be expanded to continuous membrane separation setup for repeated use of enzymes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arsenij Kokorin ◽  
Pavel D. Parshin ◽  
Patrick J. Bakkes ◽  
Anastasia A. Pometun ◽  
Vladimir I. Tishkov ◽  
...  

AbstractFusion of multiple enzymes to multifunctional constructs has been recognized as a viable strategy to improve enzymatic properties at various levels such as stability, activity and handling. In this study, the genes coding for cytochrome P450 BM3 from B. megaterium and formate dehydrogenase from Pseudomonas sp. were fused to enable both substrate oxidation catalyzed by P450 BM3 and continuous cofactor regeneration by formate dehydrogenase within one construct. The order of the genes in the fusion as well as the linkers that bridge the enzymes were varied. The resulting constructs were compared to individual enzymes regarding substrate conversion, stability and kinetic parameters to examine whether fusion led to any substantial improvements of enzymatic properties. Most noticeably, an activity increase of up to threefold was observed for the fusion constructs with various substrates which were partly attributed to the increased diflavin reductase activity of the P450 BM3. We suggest that P450 BM3 undergoes conformational changes upon fusion which resulted in altered properties, however, no NADPH channeling was detected for the fusion constructs.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3692
Author(s):  
Brana Pantelic ◽  
Marijana Ponjavic ◽  
Vukasin Jankovic ◽  
Ivana Aleksic ◽  
Sanja Stevanovic ◽  
...  

Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young’s modulus (E), 53–250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37 °C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.


2021 ◽  
Vol 61 (10) ◽  
pp. 1131-1137
Author(s):  
I. G. Baigildin ◽  
E. A. Karakhanov ◽  
A. L. Maximov ◽  
A. V. Vutolkina

Abstract The feasibility of biphenyl hydrogenation with syngas for hydrogen purification and binding with the aim of its transportation was demonstrated. Specific features of the hydrogenation of biphenyl as a promising organic hydrogen carrier using unsupported Ni–Mo sulfide catalysts were studied. In particular, the influence of temperature, reaction time, presence of water in the system, and Н2/СО gas mixture composition on the substrate conversion and selectivity with respect to products was examined. The highest conversion and the maximal hydrogen uptake are reached at 380°С in 6–8 h. The dispersed catalysts are active in biphenyl hydrogenation at the CO concentration in the Н2/СО gas mixture of up to 50 vol %, and H2O can act in this case as an in situ hydrogen source owing to the occurrence of the water-gas shift reaction.


Sign in / Sign up

Export Citation Format

Share Document