breeding efficiency
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 51)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
Liangzi Cao ◽  
Shukun Jiang ◽  
Guohua Ding ◽  
Tongtong Wang ◽  
Liangming Bai ◽  
...  

AbstractThe cold tolerance of germinating direct-sown rice (Oryza sativa L.) has an increased rate of emergence, which ensures vigorous seedling growth. Research on QTL localization for cold tolerance at the germination stage can assist in molecular marker-assisted selection and enhance breeding efficiency. In this study, 94 populations of recombinant self-incompatible lines from Heigu and Ha 9366 were selected to investigate germination rates at low temperatures. It was found that two QTL loci (qLTG-3 and qLTG-12) were located at different germination times on chromosomes 3 and 12, respectively. The two QTLs at three different germination times, located using QTL, accounted for 21.3–25.9% of the phenotypic variation. Moreover, a reciprocal effect was detected between the two QTLs. The double QTLs increased the germination rate by 22–27% in this population. Additionally, qLTG-12 improved cold tolerance at the seedling stage. The results of this study might provide the materials and molecular markers for future molecular marker-assisted breeding for cold tolerance at the germination stage.


Author(s):  
Yuan Li ◽  
Zhen Lin ◽  
Yang Yue ◽  
Haiming Zhao ◽  
Xiaohong Fei ◽  
...  

AbstractDoubled haploid technology has been widely applied to multiple plant species and is recognized as one of the most important technologies for improving crop breeding efficiency. Although mutations in MATRILINEAL/Zea mays PHOSPHOLIPASE A1/NOT LIKE DAD (MTL/ZmPLA1/NLD) and Zea mays DOMAIN OF UNKNOWN FUNCTION 679 MEMBRANE PROTEIN (ZmDMP) have been shown to generate haploids in maize, knowledge of the genetic basis of haploid induction (HI) remains incomplete. Therefore, cloning of new genes underlying HI is important for further elucidating its genetic architecture. Here, we found that loss-of-function mutations of Zea mays PHOSPHOLIPASE D3 (ZmPLD3), one of the members from the phospholipase D subfamily, could trigger maternal HI in maize. ZmPLD3 was identified through a reverse genetic strategy based on analysis of pollen-specifically expressed phospholipases, followed by validation through the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR–Cas9) system. Mutations of ZmPLD3 resulted in a haploid induction rate (HIR) similar to that of mtl/zmpla1/nld and showed synergistic effects rather than functional redundancy on tripling the HIR (from 1.19% to 4.13%) in the presence of mtl/zmpla1/nld. RNA-seq profiling of mature pollen indicated that a large number of pollen-specific differentially expressed genes were enriched in processes related to gametogenesis development, such as pollen tube development and cell communication, during the double-fertilization process. In addition, ZmPLD3 is highly conserved among cereals, highlighting the potential application of these in vivo haploid-inducer lines for other important crop plant species. Collectively, our discovery identifies a novel gene underlying in vivo maternal HI and provides possibility of breeding haploid inducers with further improved HIR.


2021 ◽  
Author(s):  
Michaela Jung ◽  
Beat Keller ◽  
Morgane Roth ◽  
Maria Jose Aranzana ◽  
Annemarie Auwerkerken ◽  
...  

Implementation of genomic tools is desirable to increase the efficiency of apple breeding. The apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic prediction accuracy, and studying genotype by environment interactions (GxE). Here we show contrasting genetic architecture and genomic prediction accuracies for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic prediction accuracies of 0.18-0.88 were estimated using single-environment univariate, single-environment multivariate, multi-environment univariate, and multi-environment multivariate models. The GxE accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ya-Lun Han ◽  
Zhi-Hui Sun ◽  
Shuai Chang ◽  
Bin Wen ◽  
Jian Song ◽  
...  

Sea urchin (Strongylocentrotus intermedius) is an economically important mariculture species in Asia, and its gonads are the only edible part. The efficiency of genetic breeding in sea urchins is hampered due to the inability to distinguish gender by appearance. In this study, we first identified a sex-associated single nucleotide polymorphism (SNP) by combining type IIB endonuclease restriction site-associated DNA sequencing (2b-RAD-seq) and genome survey. Importantly, this SNP is located within spata4, a gene specifically expressed in male. Knocking down of spata4 by RNA interference (RNAi) in male individuals led to the downregulation of other conserved testis differentiation-related genes and germ cell marker genes. We also revealed that sex ratio in this validated culture population of S. intermedius is not 1:1. Moreover, after a 58-day feeding experiment with estradiol, the expression levels of several conserved genes that are related to testis differentiation, ovary differentiation, and estrogen metabolism were dynamically changed. Taken together, our results will contribute toward improving breeding efficiency, developing sex-controlled breeding, and providing a solid base for understanding sex determination mechanisms in sea urchins.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Javaid Akhter Bhat ◽  
Deyue Yu ◽  
Abhishek Bohra ◽  
Showkat Ahmad Ganie ◽  
Rajeev K. Varshney

AbstractClimate change with altered pest-disease dynamics and rising abiotic stresses threatens resource-constrained agricultural production systems worldwide. Genomics-assisted breeding (GAB) approaches have greatly contributed to enhancing crop breeding efficiency and delivering better varieties. Fast-growing capacity and affordability of DNA sequencing has motivated large-scale germplasm sequencing projects, thus opening exciting avenues for mining haplotypes for breeding applications. This review article highlights ways to mine haplotypes and apply them for complex trait dissection and in GAB approaches including haplotype-GWAS, haplotype-based breeding, haplotype-assisted genomic selection. Improvement strategies that efficiently deploy superior haplotypes to hasten breeding progress will be key to safeguarding global food security.


2021 ◽  
Author(s):  
Карина Мустяцэ ◽  
◽  
Нина Чавдарь ◽  
Александр Рущук ◽  
Ольга Загородняя ◽  
...  

In the plant breeding of Carthamus tinctorius L. the method of individual breeding was used. Analysis of the breeding efficiency by a complex of characteristics of Carthamus tinctorius L. on average for three years showed an increase in the studied features. An increase in a breeding effect from a larger to a smaller value (in percents to the average value in the initial population) was observed in the following sequence: weight of seeds per plant, g (86,4%), quantity of seeds per plant, pcs (48,6%), quantity of inflorescences with seeds, pcs (42,7%), quantity of seeds in one basket inflorescence, pcs (38,7%), weight of 1000 seeds, g (28,5%), quantity of branches of the first level, pcs (27,2%), weight of seeds from one basket inflorescence, g (22,5%), total quantity of inflorescences per plant, pcs (17,8%), plant height, cm (15,4%).


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 771
Author(s):  
Franz Boideau ◽  
Alexandre Pelé ◽  
Coleen Tanguy ◽  
Gwenn Trotoux ◽  
Frédérique Eber ◽  
...  

Meiotic recombination is the main tool used by breeders to generate biodiversity, allowing genetic reshuffling at each generation. It enables the accumulation of favorable alleles while purging deleterious mutations. However, this mechanism is highly regulated with the formation of one to rarely more than three crossovers, which are not randomly distributed. In this study, we showed that it is possible to modify these controls in oilseed rape (Brassica napus, AACC, 2n = 4x = 38) and that it is linked to AAC allotriploidy and not to polyploidy per se. To that purpose, we compared the frequency and the distribution of crossovers along A chromosomes from hybrids carrying exactly the same A nucleotide sequence, but presenting three different ploidy levels: AA, AAC and AACC. Genetic maps established with 202 SNPs anchored on reference genomes revealed that the crossover rate is 3.6-fold higher in the AAC allotriploid hybrids compared to AA and AACC hybrids. Using a higher SNP density, we demonstrated that smaller and numerous introgressions of B. rapa were present in AAC hybrids compared to AACC allotetraploid hybrids, with 7.6 Mb vs. 16.9 Mb on average and 21 B. rapa regions per plant vs. nine regions, respectively. Therefore, this boost of recombination is highly efficient to reduce the size of QTL carried in cold regions of the oilseed rape genome, as exemplified here for a QTL conferring blackleg resistance.


Author(s):  
S. I. Storozhuk ◽  
V. L. Petukhov ◽  
V. A. Andreeva ◽  
E. A. Klimanova ◽  
T. V. Konovalova ◽  
...  

The authors have studied the genetic value of producers of the aboriginal Kulunda finewool sheep breed based on various analysis methods of the productivity of their progeny. The data on 574 offspring (daughters) received from 16 rams-producers of the “Steptoe” breeding farm of Altai Krai were used in the research. The genotypes of ram progeny were evaluated by the productivity of the rams at one year of age. In assessing the fathers, the number of effective daughters needed to confirm a sufficient number of offspring was calculated. Water, soil, and feed were tested for heavy metals content in the sheep breeding area, which did not exceed the MPC (Maximum Permissible Concentration). The breeding indices of the progeny ranged from 114 to 1562. The live weight of the rams was 120 kg. The live weight of the daughters was 50.0 kg. The sheep (daughters) had a wool gain of 5.7 kilograms per ewe. The authors established a high homogeneity of the genotypes of rams producers in terms of the live weight of daughters. The genetic variability of the fathers was 3.2%. According to productivity indices, the rams-producers (#4452, 26133, 3611, 0125 and 44244) occupied the first five ranks. The effect of the genotypes of ram producers on the daughters’ live weight and wool hair gain was established. The ranking data showed the advantage of daughters in several traits obtained from prepotent producers. The authors suggest that ram sires no. 3611, 0125, 26133 and 44244 should be used extensively to improve breeding efficiency. The authors also applied the Hozo method in the absence of normal distribution of traits. In other cases, data processing by methods of variation statistics was used.


2021 ◽  
Author(s):  
Suhel Mehandi ◽  
Anita Yadav ◽  
Ramanuj Maurya ◽  
Sudhakar Prasad Mishra ◽  
Syed Mohd. Quatadah ◽  
...  

Rice is the predominant crop in India and is the staple food in eastern and southern Indian populations. One of the oldest grown crops is rice. The initial discovery of cytoplasmic male sterile (CMS) three-line system made it possible to produce hybrids that significantly increase rice yields compared to its inbred counterparts. Further genetic and molecular studies help elucidate the mechanisms involved in CMS male sterility. Additional CMS types were also discovered with similar genetic control from wild sources by interspecific hybridization. In India more than 1200 varieties were released for cultivation suitable different ecosystems and out of them 128 varieties have been contributed from NRRI, Cuttack. A list of these varieties are furnished below with their duration, grain type, yield potential, reaction to major disease and insects grain quality and tolerance to different adverse situations. Recent advances in molecular approaches used in modern rice breeding include molecular marker technology and marker-assisted selection (MAS); molecular mapping of genes and QTLs and production of hybrids and alien introgression lines (AILs). Genomic selection (GS) has been projected as alternative to conventional MAS. GS has huge potential to enhance breeding efficiency by increasing gain per selection per unit time. Due to the adaptation of semi dwarf high yielding varieties, combined with intensive input management practices, the country witnessed an impressive rice production growth in the post-independent period. Rice production was increased four times, productivity three times while the area increase was only one and half times during this period. The projected rice requirement by 2025, in order to keep up with increasing population, is about 130 m.t. The challenge of growing rice production is made more difficult by declining trends in HYV’s yields, decreasing and degrading natural resources such as land and water and a severe labour shortage.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pooja Tamboli ◽  
Anurag Bharadwaj ◽  
Amit Chaurasiya ◽  
Yogesh Chandrakant Bangar ◽  
Andonissamy Jerome

The data on first lactation and lifetime performance records of 501 Nili-Ravi were collected for a period from 1983 to 2017 (35 years) maintained at ICAR-Central Institute for Research on Buffaloes, Sub-Campus, Nabha, Punjab. The data were analyzed to calculate heritability, genetic and phenotypic correlation for first lactation traits, viz., Age at First Calving (AFC), First Lactation Total Milk Yield (FLTMY), First Lactation Standard (305 days or less) Milk Yield (FLSMY), First Peak Milk Yield (FPY), First Lactation Length (FLL), First Dry Period (FDP), First Service Period (FSP) and First Calving Interval (FCI), Herd Life (HL), Productive Life (PL), Productive Days (PD), Unproductive Days (UD), Breeding Efficiency (BE), Total Lifetime Milk Yield (Total LTMY), Standard Lifetime Milk Yield (Standard LTMY), Milk Yield Per Day of Productive Life (MY/PL), Milk Yield Per Day of Productive Days (MY/PD), and Milk Yield Per Day of Herd Life (MY/HL). For estimation of variance component and heritability separately for each trait, the uni-trait animal model was equipped, whereas to estimate genetic and phenotypic correlations between traits, bi-trait animal models were fitted. The estimates of heritability for production and reproduction traits of Nili-Ravi were medium, i.e., 0.365 ± 0.087, 0.353 ± 0.071, 0.318 ± 0.082, 0.354 ± 0.076, and 0.362 ± 0.086 for FLSMY, FDP, FSP, FCI, and AFC, respectively. The estimates of heritability were low, i.e., 0.062 ± 0.088, 0.123 ± 0.090, 0.158 ± 0.090, 0.155 ± 0.091, and 0.129 ± 0.091 for HL, PL, PD, Total LTMY, and Standard LTMY and high, i.e., 0.669 ± 0.096 for BE. Genetic correlation for FLTMY was high with FLL (0.710 ± 0.103), and genetic correlation of FLTMY was high and positive with HL, Total LTMY, MY/PL, and MY/PD while low and positive with PL. Genetic correlation of AFC was low and negative with PL, PD, UD, BE, Total LTMY, Standard LTMY, MY/PL, and MY/PD and negative with MY/HL. Significant positive phenotypic association of FPY was seen with FLTMY, FLSMY, FLL, AFC, HL, Total LTMY, and Standard LTMY. Higher heritability of first lactation traits especially FPY suggests sufficient additive genetic variability, which can be exploited under selection and breeding policy in order to improve overall performance of Nili-Ravi buffaloes.


Sign in / Sign up

Export Citation Format

Share Document