probabilistic context
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 37)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 732
Author(s):  
Abderrahim Lakehal ◽  
Adel Alti ◽  
Philippe Roose

This paper aims at ensuring an efficient recommendation. It proposes a new context-aware semantic-based probabilistic situations injection and adaptation using an ontology approach and Bayesian-classifier. The idea is to predict the relevant situations for recommending the right services. Indeed, situations are correlated with the user’s context. It can, therefore, be considered in designing a recommendation approach to enhance the relevancy by reducing the execution time. The proposed solution in which four probability-based-context rule situation items (user’s location and time, user’s role, their preferences and experiences) are chosen as inputs to predict user’s situations. Subsequently, the weighted linear combination is applied to calculate the similarity of rule items. The higher scores between the selected items are used to identify the relevant user’s situations. Three context parameters (CPU speed, sensor availability and RAM size) of the current devices are used to ensure adaptive service recommendation. Experimental results show that the proposed approach enhances accuracy rate with a high number of situations rules. A comparison with existing recommendation approaches shows that the proposed approach is more efficient and decreases the execution time.


Author(s):  
Vinícius de Barros Souza ◽  
Edson Denner Leonel

Abstract Reinforcement corrosion is a concern in the structural engineering domain, since it triggers several pathological manifestations, reducing the structural service life. Chloride diffusion has been considered one of main causes of reinforcements' corrosion in reinforced concrete. Corrosion starts when the chloride concentration at the reinforcements interface reaches the threshold content, leading to depassivation, whose assessment of its time of starts is a major challenge. This study applied the transient Boundary Element Method (BEM) approach for modelling chloride diffusion in concrete pores. The subregion BEM technique effectively represented the cracks inherent to the material domain, and environmental effects were also considered. Because of the inherent randomness of the problem, the service life was evaluated within the probabilistic context; therefore, Monte Carlo Simulation (MCS) assessed the probabilistic corrosion time initiation. Three applications demonstrated the accuracy and robustness of the model, in which the numerical results achieved by BEM were compared against numerical, analytical, and experimental responses from the literature. The probabilistic modelling substantially reduced the structural service life when the cracks length was longer than half of concrete cover thickness in highly aggressive environments.


2021 ◽  
Author(s):  
André Forster ◽  
Johannes Hewig ◽  
John JB Allen ◽  
Johannes Rodrigues ◽  
Philipp Ziebell ◽  
...  

The lateral frontal Cortex serves an important integrative function for converging information from a number of neural networks. It thus provides context and direction to both stimulus processing and accompanying responses. Especially in emotion related processing, the right hemisphere has often been described to serve a special role including a special sensitivity to stochastic learning and model building. In this study, the right inferior frontal gyrus (riFG) of 41 healthy participants was targeted via ultrasound neuromodulation to shed light on the involvement of this area in the representation of probabilistic context information and the processing of currently presented emotional faces. Analyses reveal that the riFG does not directly contribute to processing of currently depicted emotional stimuli but provides for information about the estimated likelihood of occurrence of stimulus features.


2021 ◽  
Vol 12 ◽  
Author(s):  
Perrine Brusini ◽  
Olga Seminck ◽  
Pascal Amsili ◽  
Anne Christophe

While many studies have shown that toddlers are able to detect syntactic regularities in speech, the learning mechanism allowing them to do this is still largely unclear. In this article, we use computational modeling to assess the plausibility of a context-based learning mechanism for the acquisition of nouns and verbs. We hypothesize that infants can assign basic semantic features, such as “is-an-object” and/or “is-an-action,” to the very first words they learn, then use these words, the semantic seed, to ground proto-categories of nouns and verbs. The contexts in which these words occur, would then be exploited to bootstrap the noun and verb categories: unknown words are attributed to the class that has been observed most frequently in the corresponding context. To test our hypothesis, we designed a series of computational experiments which used French corpora of child-directed speech and different sizes of semantic seed. We partitioned these corpora in training and test sets: the model extracted the two-word contexts of the seed from the training sets, then used them to predict the syntactic category of content words from the test sets. This very simple algorithm demonstrated to be highly efficient in a categorization task: even the smallest semantic seed (only 8 nouns and 1 verb known) yields a very high precision (~90% of new nouns; ~80% of new verbs). Recall, in contrast, was low for small seeds, and increased with the seed size. Interestingly, we observed that the contexts used most often by the model featured function words, which is in line with what we know about infants' language development. Crucially, for the learning method we evaluated here, all initialization hypotheses are plausible and fit the developmental literature (semantic seed and ability to analyse contexts). While this experiment cannot prove that this learning mechanism is indeed used by infants, it demonstrates the feasibility of a realistic learning hypothesis, by using an algorithm that relies on very little computational and memory resources. Altogether, this supports the idea that a probabilistic, context-based mechanism can be very efficient for the acquisition of syntactic categories in infants.


Author(s):  
Stephen Cranefield ◽  
Ashish Dhiman

To promote efficient interactions in dynamic and multi-agent systems, there is much interest in techniques that allow agents to represent and reason about social norms that govern agent interactions. Much of this work assumes that norms are provided to agents, but some work has investigated how agents can identify the norms present in a society through observation and experience. However, the norm-identification techniques proposed in the literature often depend on a very specific and domain-specific representation of norms, or require that the possible norms can be enumerated in advance. This paper investigates the problem of identifying norm candidates from a normative language expressed as a probabilistic context-free grammar, using Markov Chain Monte Carlo (MCMC) search. We apply our technique to a simulated robot manipulator task and show that it allows effective identification of norms from observation.


Synthese ◽  
2021 ◽  
Author(s):  
Theo A. F. Kuipers

AbstractTheories of truth approximation in terms of truthlikeness (or verisimilitude) almost always deal with (non-probabilistically) approaching deterministic truths, either actual or nomic. This paper deals first with approaching a probabilistic nomic truth, viz. a true probability distribution. It assumes a multinomial probabilistic context, hence with a lawlike true, but usually unknown, probability distribution. We will first show that this true multinomial distribution can be approached by Carnapian inductive probabilities. Next we will deal with the corresponding deterministic nomic truth, that is, the set of conceptually possible outcomes with a positive true probability. We will introduce Hintikkian inductive probabilities, based on a prior distribution over the relevant deterministic nomic theories and on conditional Carnapian inductive probabilities, and first show that they enable again probabilistic approximation of the true distribution. Finally, we will show, in terms of a kind of success theorem, based on Niiniluoto’s estimated distance from the truth, in what sense Hintikkian inductive probabilities enable the probabilistic approximation of the relevant deterministic nomic truth. In sum, the (realist) truth approximation perspective on Carnapian and Hintikkian inductive probabilities leads to the unification of the inductive probability field and the field of truth approximation.


Author(s):  
Ayesha Khatun ◽  
Khadiza Tul Kobra Happy ◽  
Babe Sultana ◽  
Jahidul Islam ◽  
Sumaiya Kabir

The parsing technique based on associate grammar rules as well as probability is called stochastic parsing. This paper suggested a probabilistic method to eliminate the uncertainty from the sentences of Bangla. The technique of Binarization is applied to increase the precision of the parsing. CYK algorithm is used in this paper. The work mainly focused on intonation-based sentences, for these reasons PCFGs (Probabilistic Context-Free Grammars) is based on proposed. About 30324 words are used to test the proposed system; average 93% accuracy is achieved. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 7, Dec 2020 P 51-56


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Witold Dyrka ◽  
Marlena Gąsior-Głogowska ◽  
Monika Szefczyk ◽  
Natalia Szulc

Abstract Background Amyloid signaling motifs are a class of protein motifs which share basic structural and functional features despite the lack of clear sequence homology. They are hard to detect in large sequence databases either with the alignment-based profile methods (due to short length and diversity) or with generic amyloid- and prion-finding tools (due to insufficient discriminative power). We propose to address the challenge with a machine learning grammatical model capable of generalizing over diverse collections of unaligned yet related motifs. Results First, we introduce and test improvements to our probabilistic context-free grammar framework for protein sequences that allow for inferring more sophisticated models achieving high sensitivity at low false positive rates. Then, we infer universal grammars for a collection of recently identified bacterial amyloid signaling motifs and demonstrate that the method is capable of generalizing by successfully searching for related motifs in fungi. The results are compared to available alternative methods. Finally, we conduct spectroscopy and staining analyses of selected peptides to verify their structural and functional relationship. Conclusions While the profile HMMs remain the method of choice for modeling homologous sets of sequences, PCFGs seem more suitable for building meta-family descriptors and extrapolating beyond the seed sample.


2021 ◽  
Author(s):  
Witold Dyrka ◽  
Marlena Gąsior-Głogowska ◽  
Monika Szefczyk

AbstractBackgroundAmyloid signaling motifs are a class of protein motifs which share basic structural and functional features despite lack of apparent sequence homology. They are hard to detect in large sequence databases either with the alignment-based profile methods (due to short length and diversity) or with generic amyloid- and prion-finding tools (due to insufficient discriminative power). We propose to address the challenge with a machine learning grammatical model capable of generalizing over diverse collections of unaligned yet related motifs.ResultsFirst, we introduce and test improvements to our probabilistic context-free grammar framework for protein sequences that allow for inferring more sophisticated models achieving high sensitivity at low false positive rates. Then, we infer universal grammars for a collection of recently identified bacterial amyloid signaling motifs and demonstrate that the method is capable of generalizing by successfully searching for related motifs in fungi. The results are compared to available alternative methods. Finally, we conduct spectroscopy analyses of selected peptides to verify their structural and functional relationship.ConclusionsWhile the profile HMMs remain the method of choice for modeling homologous sets of sequences, PCFGs seem more suitable for building meta-family descriptors and extrapolating beyond the seed sample.


Sign in / Sign up

Export Citation Format

Share Document