nucleation and growth
Recently Published Documents


TOTAL DOCUMENTS

5073
(FIVE YEARS 631)

H-INDEX

129
(FIVE YEARS 12)

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123125
Author(s):  
Hong-Quan Do ◽  
Alessandro Faccinetto ◽  
Luc-Sy Tran ◽  
Pascale Desgroux ◽  
Laurent Gasnot ◽  
...  

Author(s):  
Philipp Retzl ◽  
Yao V. Shan ◽  
Evelyn Sobotka ◽  
Marko Vogric ◽  
Wenwen Wei ◽  
...  

AbstractThe progress of mean-field modeling and simulation in steel is presented. In the modeling, the focus is put on the development and application of a physical modeling base, including Calphad, diffusion assessment, nucleation and growth of precipitates, and dislocation dynamics. This leads to an improved prediction of the materials response after different thermo-mechanical treatments in terms of microstructure evolution and mechanical properties. The presented case studies represent the success of the integrated computational materials engineering approach.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Biao Jiang ◽  
Yizhou Shen ◽  
Jie Tao ◽  
Yangjiangshan Xu ◽  
Haifeng Chen ◽  
...  

Freezing of liquid water occurs in many natural phenomena and affects countless human activities. The freezing process mainly involves ice nucleation and continuous growth, which are determined by the energy and structure fluctuation in supercooled water. Herein, considering the surface hydrophilicity and crystal structure differences between metal and graphene, we proposed a kind of surface configuration design, which was realized by graphene nanosheets being alternately anchored on a metal substrate. Ice nucleation and growth were investigated by molecular dynamics simulations. The surface configuration could induce ice nucleation to occur preferentially on the metal substrate where the surface hydrophilicity was higher than the lateral graphene nanosheet. However, ice nucleation could be delayed to a certain extent under the hindering effect of the interfacial water layer formed by the high surface hydrophilicity of the metal substrate. Furthermore, the graphene nanosheets restricted lateral expansion of the ice nucleus at the clearance, leading to the formation of a curved surface of the ice nucleus as it grew. As a result, ice growth was suppressed effectively due to the Gibbs–Thomson effect, and the growth rate decreased by 71.08% compared to the pure metal surface. Meanwhile, boundary misorientation between ice crystals was an important issue, which also prejudiced the growth of the ice crystal. The present results reveal the microscopic details of ice nucleation and growth inhibition of the special surface configuration and provide guidelines for the rational design of an anti-icing surface.


2022 ◽  
Vol 7 (1) ◽  
pp. 018201
Author(s):  
Haonan Sui ◽  
Long Yu ◽  
Wenbin Liu ◽  
Ying Liu ◽  
Yangyang Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document