pressure crystallization
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 1049 ◽  
pp. 18-23
Author(s):  
Vladimir F. Korostelev ◽  
M.S. Denisov

The properties of bulk metal products are formed when molten metal transforms from an unstructured liquid into a solid crystal state. We suggest a new approach to the automation of the control over crystallized metal shrinkage compensation based on controlling the law of change in pressure applied to crystallizing metal through a program taking into account the transition process in the hydraulic system of the production equipment. We observed the increase in rigidity, durability, and pliability of В95-alloy samples as compared to cast aluminum alloys. The metal utilization rate can be increased up to 0.90 of the liquid metal volume.


2021 ◽  
pp. 126380
Author(s):  
Kouji Maeda ◽  
Yosuke Naito ◽  
Hidetoshi Kuramochi ◽  
Koji Arafun ◽  
Kazuhiro Itoh ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 145
Author(s):  
Przemyslaw Sowinski ◽  
Ewa Piorkowska ◽  
Severine A. E. Boyer ◽  
Jean-Marc Haudin

1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol (DMDBS) is highly effective in nucleation of the α- form of isotactic polypropylene (iPP). However, its role in high-pressure crystallization of iPP, facilitating the formation of the γ- polymorph, has not been explored. The present paper focuses on the influence of DMDBS on nucleation of high-pressure crystallization of iPP. iPP with 0.2–1.0 wt.% of the DMDBS was crystallized under elevated pressure, up to 300 MPa, in various thermal conditions, and then analyzed by PLM, WAXD, SEM, and DSC. During cooling, crystallization temperatures (Tc) were determined. It was found that under high-pressure DMDBS nucleated crystallization of iPP in the orthorhombic γ- form. As a consequence, Tc and the γ- form content increased for the nucleated iPP, while the size of polycrystalline aggregates decreased, although the effects depended on DMDBS content. The significant increase of Tc and the decrease of grain size under high pressure of 200–300 MPa required higher content of DMDBS than the nucleation of the α-form under lower pressure, possibly due to the effect of pressure on crystallization of DMDBS itself, which is a prerequisite for its nucleating activity.


Author(s):  
Chuanfeng Wang ◽  
Zhou Peng ◽  
Xi Huang ◽  
Cheng Yan ◽  
Tao Yang ◽  
...  

Polyhydroxybutyrate (PHB) with special wrinkled spherulites enables significant improvement in triboelectric outputs of the microbial polyester.


Lithos ◽  
2020 ◽  
Vol 378-379 ◽  
pp. 105796 ◽  
Author(s):  
Xia Liu ◽  
Ben-Xun Su ◽  
Yang Bai ◽  
Paul T. Robinson ◽  
Xu Tang ◽  
...  

2020 ◽  
Author(s):  
Gong-Jian Tang ◽  
Qiang Wang ◽  
Derek Wyman ◽  
Wei Dan ◽  
Lin Ma ◽  
...  

<p>Accretionary orogens are characterized by voluminous juvenile components (recently derived from the mantle) and knowing the origin(s) of such components is vital for understanding crustal generation. Here we present field and petrological observations, along with mineral chemistry, zircon U–Pb age and Hf-O isotope data, and whole rock geochemical and Sr-Nd isotopic data for the c. 320 Ma Ulungur intrusive complex from the Central Asian Orogenic Belt. The complex consists of two different magmatic series: one is characterized by medium-K to high-K calc-alkaline gabbro to monzogranite; the other is defined by peralkaline aegirine-arfvedsonite granitoids. The calc-alkaline and peralkaline series granitoids have similar depleted mantle-like Sr-Nd-Hf isotopic compositions, but they have different zircon δ<sup>18</sup>O values: the calc-alkaline series have mantle-like δ<sup>18</sup>O values with mean compositions ranging from 5.2 ± 0.5‰ to 6.0 ± 0.9‰ (2SD), and the peralkaline granitoids have low δ<sup>18</sup>O values ranging from 3.3 ± 0.5‰ to 3.9 ± 0.4‰ (2SD). The calc-alkaline series were derived from a hydrous sub-arc mantle wedge, based on the isotope and geochemical compositions, under garnet peridotite facies conditions. This study suggests that the magmas underwent substantial differentiation, ranging from high pressure crystallization of ultramafic cumulates in the lower crust to lower pressure crystallization dominated by amphibole, plagioclase and minor biotite in the upper crust. The peralkaline series rocks are characterized by δ<sup>18</sup>O values lower than the mantle and enrichment of high field strength elements (HFSEs) and heavy rare earth elements (HREEs). They likely originated from melting of preexisting hydrothermally altered residual oceanic crust in the lower crust of the Junggar intra-oceanic arc. Early crystallization of clinopyroxene and amphibole was inhibited owing to their low melting temperature, leading to HFSEs and HREEs enrichment in residual peralkaline melts during crystallization of a feldspar-dominated mineral assemblage. Thus, the calc-alkaline and peralkaline series represent episodes of crust generation and reworking, respectively, demonstrating that the juvenile isotopic signature in accretionary orogens can be derived from diverse source rocks. Our results show that reworking of residual oceanic crust also plays an important role in continental crust formation for accretionary orogens, which has not previously been widely recognized.</p>


2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Gong-Jian Tang ◽  
Qiang Wang ◽  
Derek A Wyman ◽  
Wei Dan ◽  
Lin Ma ◽  
...  

Abstract Accretionary orogens are characterized by voluminous juvenile components (recently derived from the mantle) and knowing the origin(s) of such components is vital for understanding crustal generation. Here we present field and petrological observations, along with mineral chemistry, zircon U–Pb age and Hf–O isotope data, and whole rock geochemical and Sr–Nd isotopic data for the c.320 Ma Ulungur intrusive complex from the Central Asian Orogenic Belt. The complex consists of two different magmatic series: one is characterized by medium- to high-K calc-alkaline gabbro to monzogranite; the other is defined by peralkaline aegirine–arfvedsonite granitoids. The calc-alkaline and peralkaline series granitoids have similar depleted mantle-like Sr–Nd–Hf isotopic compositions, but they have different zircon δ18O values: the calc-alkaline series have mantle-like δ18O values with mean compositions ranging from 5·2 ± 0·5‰ to 6·0 ± 0·9‰ (2SD), and the peralkaline granitoids have low δ18O values ranging from 3·3 ± 0·5‰ to 3·9 ± 0·4‰ (2SD). The calc-alkaline series were derived from a hydrous sub-arc mantle wedge, based on the isotope and geochemical compositions, under garnet peridotite facies conditions. This study suggests that the magmas underwent substantial differentiation, ranging from high pressure crystallization of ultramafic cumulates in the lower crust to lower pressure crystallization dominated by amphibole, plagioclase and minor biotite in the upper crust. The peralkaline series rocks are characterized by δ18O values lower than the mantle and enrichment of high field strength elements (HFSEs) and heavy rare earth elements (HREEs). They likely originated from melting of preexisting hydrothermally altered residual oceanic crust in the lower crust of the Junggar intra-oceanic arc. Early crystallization of clinopyroxene and amphibole was inhibited owing to their low melting temperature, leading to HFSEs and HREEs enrichment in residual peralkaline melts during crystallization of a feldspar-dominated mineral assemblage. Thus, the calc-alkaline and peralkaline series represent episodes of crust generation and reworking, respectively, demonstrating that the juvenile isotopic signature in accretionary orogens can be derived from diverse source rocks. Our results show that reworking of residual oceanic crust also plays an important role in continental crust formation for accretionary orogens, which has not previously been widely recognized.


Sign in / Sign up

Export Citation Format

Share Document