global algorithm
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Etienne Behar ◽  
Shahab Fatemi ◽  
Pierre Henri ◽  
Mats Holmström

Abstract. Despite the close relationship between planetary science and plasma physics, few advanced numerical tools allow to bridge the two topics. The code Menura proposes a breakthrough towards the self-consistent modelling of these overlapping field, in a novel 2-step approach allowing for the global simulation of the interaction between a fully turbulent solar wind and various bodies of the solar system. This article introduces the new code and its 2-step global algorithm, illustrated by a first example: the interaction between a turbulent solar wind and a comet.


2021 ◽  
Vol 25 (9) ◽  
pp. 5193-5217
Author(s):  
Masoud Zaerpour ◽  
Shadi Hatami ◽  
Javad Sadri ◽  
Ali Nazemi

Abstract. Climate change affects natural streamflow regimes globally. To assess alterations in streamflow regimes, typically temporal variations in one or a few streamflow characteristics are taken into account. This approach, however, cannot see simultaneous changes in multiple streamflow characteristics, does not utilize all the available information contained in a streamflow hydrograph, and cannot describe how and to what extent streamflow regimes evolve from one to another. To address these gaps, we conceptualize streamflow regimes as intersecting spectrums that are formed by multiple streamflow characteristics. Accordingly, the changes in a streamflow regime should be diagnosed through gradual, yet continuous changes in an ensemble of streamflow characteristics. To incorporate these key considerations, we propose a generic algorithm to first classify streams into a finite set of intersecting fuzzy clusters. Accordingly, by analyzing how the degrees of membership to each cluster change in a given stream, we quantify shifts from one regime to another. We apply this approach to the data, obtained from 105 natural Canadian streams, during the period of 1966 to 2010. We show that natural streamflow in Canada can be categorized into six regime types, with clear hydrological and geographical distinctions. Analyses of trends in membership values show that alterations in natural streamflow regimes vary among different regions. Having said that, we show that in more than 80 % of considered streams, there is a dominant regime shift that can be attributed to simultaneous changes in streamflow characteristics, some of which have remained previously unknown. Our study not only introduces a new globally relevant algorithm for identifying changing streamflow regimes but also provides a fresh look at streamflow alterations in Canada, highlighting complex and multifaceted impacts of climate change on streamflow regimes in cold regions.


2020 ◽  
Author(s):  
Samuel Scheibler ◽  
Stephen Williams ◽  
Joerg Mossbrucker ◽  
Glenn Wrate ◽  
Owe Petersen

Sign in / Sign up

Export Citation Format

Share Document